
NASA-CR-205698

Final Report • Volume 2 • February 1994

CONGESTION AVOIDANCE TESTBED
EXPERIMENTS: FINAL TECHNICAL REPORT

ITAD-8600-FR-94-005

Volume 2

Project 8600

Barbara A. Denny, Computer Scientist
Diane S. Lee, Senior Research Engineer
Paul E. McKenney, Sr. Computer Scientist
Danny Lee, Research Engineer
Telecommunications Theory and Technology Program

Prepared for:

National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California 94035

Attn: Dr. Henry Lum, Code RI, M/S: 244-7

and

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, Virginia 22203-1714

Attn: Major Michael St. Johns

,C) /

333 Ravenswood Aver_Je • Menlo Park, CA 94025-3493 • (415) 326-6200 • FAX: (415) 326-5512 • Telex: 334486

wni

Final Report • Volume 2 ° February 1994

CONGESTION AVOIDANCE TESTBED
EXPERIMENTS: FINAL TECHNICAL REPORT

ITAD-8600-FR-94-005

Volume 2

Project 8600

Barbara A. Denny, Computer Scientist
Diane S. Lee, Senior Research Engineer
Paul E. McKenney, Sr. Computer Scientist
Danny Lee, Research Engineer
Telecommunications Theory and Technology Program

Prepared for:

National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California 94035

Attn: Dr. Henry Lum, Code RI, M/S: 244-7

and

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, Virginia 22203-1714

Attn: Major Michael St. Johns

Approved by:

Michael S. Frankel, Vice President and Director
Information, Telecommunications, and Automation Division

SRI International 333 Ravenswood Avenue • Menlo Park CA 94025 3493 ,, (415) 326-6200 • FAX (415) 326-5512 • Telex 334486

qll

CONTENTS

LIST OF FIGURES AND TABLES ... iv

1 INTRODUCTION ... 1

2 OVERVIEW ... 3

2.1 OBJECTIVES ... 3

2.2 APPROACH .. 3

2.3 ACCOMPLISHMENTS ... 4

3 EXPERIMENT SUPPORT ... 5

3.1 TRAFFIC GENERATOR ... 5

3.2 ANALYSIS TOOLS ... 6

4 BENCHMARKS ... 7

4.1 CONGESTION AVOIDANCE TESTBED EXPERIMENTS 7

4.2 BASELINE MEASUREMENTS ... 7

4.3 MEASUREMENT RESULTS .. 12

5 STOCHASTIC FAIRNESS QUEUEING .. 13

5.1 OVERVIEW .. 13

5.2 IMPLEMENTATION .. 13

5.3 EXPERIMENTATION ... 14

6 HYBRID ALGORITHM FOR BEST EFFORT AND RESOURCE
RESERVATION SERVICE .. 17

6.1 DESIGN .. 17

6.2 IMPLEMENTATION .. 18

6.3 EXPERIMENTATION ... 18

7 CONCLUSION ... 21

REFERENCES ... 23

Appendix A
TG USER MANUAL

_ppendix B
BENCHMARK DOCUMENT

Appendix C
BASELINE MEASUREMENTS

Appendix D
REPORT ON STOCHASTIC FAIRNESS QUEUEING EXPERIMENTS

Appendix E
REPORT ON SFQ AND VIRTUALCLOCK: A HYBRID ALGORITHM

Appendix F
AN ANNOTATED BIBLIOGRAPHY FOR CONGESTION CONTROL AND

RESOURCE RESERVATION

iii

FIGURES AND TABLES

FIGURES

1 DARTnet Topology ... 1
2 Two-Stream Test Traffic Flow .. 9

3 Determining Throughput ... 10

4 Throughput Traffic Flow ... 11

5 DARTnet Throughput ... 11
6 SFQ Data Structure .. 14

TABLES

1 Best-Effort Experiments ... 8

2 Type-of-Service Experiments ... 8
3 Resource-Reservation Experiments ... 8

,,e.-

iv

1 INTRODUCTION

DARTnet is the Advanced Research Projects Agency (ARPA) Research Testbed Network

whose purpose is to provide an experimental platform for network research in traffic control,

resource management, routing algorithms, and advanced networking applications. It is a cross-

country TI* network that connects research sites via T1 tail circuits. The switches are Sun

Microsystems, Inc. (Sun) SPARCstations,t running+ a 4.1.1 Sun-based kernel in order to provide

an open development platform for investigating new technology. The switches use Sun's High

Speed Serial Interface (HSI/S) card to transmit and receive packets into the network. Figure 1
illustrates the current DARTnet topology.

This document is part two of the final technical report describing the work performed by SRI

International (SRI) under SRI Project 8600. Part two, comprising volumes 2 and 3, covers SRI's

work on DARTnet in the area of DARTnet in the area of Congestion Avoidance Testbed

Experiments (CATE). Our goals in this effort were to advance the state of the art in benchmarking

networking performance and traffic control by developing support tools for network

experimentation, by designing benchmarks that allow various algorithms to be meaningfully

compared, and by investigating new queueing techniques that better satisfy the needs of best-effort
and reserved resource traffic.

This document is organized as follows. The first volume (Volume 2 of the final technical

report) describes the work performed and the results obtained. It begins with an overview of the

project, followed by sections describing each task in detail (Sections 3 and 4 deal with our

benchmarking work; Sections 5 and 6 deal with our work in traffic control), and ends with our

concluding comments and a list of references, followed by appendices.

LBL

SUN

AMES

SRI

XEROX

LBL:
MIT:
BBN:
BELL:
AMES:

Lawrence Berkeley Laboratory LA POP:
Massachusetts Institute of Technology DC POP:
Bolt Beranek and Newman Inc., Massachusetts UDEL:
Bellcore, New Jersey SUN:
National Aeronautics and Space Administration XEROX:
Ames Research Center, California ISh

Los Angeles Point of Presence
Washington, DC Point of Presence
University of Delaware
Sun Microsystems, Inc., California
Xerox Palo Alto Research Center, Califomia
Information Sciences Institute,
University of Southern California (USC)

Figure 1. DARTnet Topology

*Due to hardware constraints, the network currently operates at 1.344 Mb/s. instead of 1.536 Mb/s.

tAll product names mentioned in this document are the trademarks of their respective holders.

The appendices,includingall reportsproducedfor eachtask(asAppendicesA, B, D, E,
andF), areasfollows.

• AppendixA: Traffic Generator Software Release Notes [McKenney, Lee, and

Denny 1993].

• Appendix B: Experiment Design for CATE [McKenney and Denny 1993].

• Appendix C: Baseline Measurements.

• Appendix D: A Report on Stochastic Fairness Queueing (SFQ) Experiments

[Denny 1993a].

• Appendix E: A HybridAlgorithmfor Combining Best-Effort and Resource

Reservation Service [Denny 1993b].

• Appendix F: Annotated Bibliography for Congestion Control and Resource

Reservation [Lee and Denny 1993].

The second volume of this report (Volume 3 of the final technical report) contains the source

code of all software developed on this project. All of this software is available via anonymous FTP

on ftp.erg.sri.com.

.¢-

2

2 OVERVIEW

2.1 OBJECTIVES

DARTnet provides an excellent environment for executing networking experiments. Since

the network is private and spans the continental United States, it gives researchers a great

opportunity to test network behavior under controlled conditions. However, this opportunity is not

available very often, and therefore a support environment for such testing is lacking. To help

remedy this situation, part of SRI's effort in this project was devoted to advancing the state of the

art in the techniques used for benchmarking network performance.

The second objective of SRI's effort in this project was to advance networking technology in

the area of traffic control, and to test our ideas on DARTnet, using the tools we developed to

improve benchmarking networks. Networks are becoming more common and are being used by

more and more people. The applications, such as multimedia conferencing and distributed

simulations, are also placing greater demand on the resources the networks provide. Hence, new
mechanisms for traffic control must be created to enable their networks to serve the needs of their

users. SRI's objective, therefore, was to investigate a new queueing and scheduling approach that

will help to meet the needs of a large, diverse user population in a "fair" way.

2.2 APPROACH

To improve current benchmarking capabilities, SRI developed a general-purpose traffic

generation/networking loading tool called Traffic Generator (TG), and a set of associated analysis

tools to reduce and comprehend the data collected by the TG. The TG enables researchers to create

high-quality and repeatable experiments on packet-switched networks. The TG is driven by a

control language (script) that specifies various operating modes, protocols, addressing functions,

traffic parameters, and execution times, so that researchers know exactly what traffic is being

created and when. SRI did not, however, want to recreate existing tools. Therefore, SRI decided to

use a public-domain graphing tool called grtool to display the results collected by the TG, such as

delay and throughput. Simple perl scripts were written that take the data from the TG and place it

in a tabular file that grtool can use. A series of experiments for testing various algorithms' resource

reservation and allocation capabilities were also developed. By executing these experiments,

researchers can quantitatively evaluate and compare the abilities of different algorithms to meet the

resource needs of its users. These benchmarks are not dependent on a specific network topology

and therefore may be applicable to a wide range of users; however, DARTnet is a suitable

environment for performing these experiments.

A queue is a natural place to control the traffic flow. Historically, network service has been

provided through a first-in, first out (FIFO) queueing discipline. This simple form of traffic control

has proved to be inadequate under increasing service demands, due to its lack of fair service to

individual users and its inability to support the sophisticated resource demands of new applications.

Under previous ARPA sponsorship, SRI developed a probabilistic variant of fair queueing known

as Stochastic Fairness Queueing (SFQ). It was designed to give fair service to best-effort traffic,

i.e. traffic with no delivery constraints, and to scale well as the number of users increases. Our

approach, therefore, is to investigate SFQ in DARTnet by implementing and experimenting with

it and then combine it with a resource reservation algorithm to satisfy the demands of users who

require a certain level of service from the network.

3

2.3 ACCOMPLISHMENTS

SRI fulfilled the goals stated above. In particular, SRI

• Developed, and released to the public, support tools consisting of the TG and data

reduction tools based upon the output of the TG. This traffic generator has attracted

users at many other locations, including commercial, government and academic
sites.

Designed a series of experiments for testing the resource reservation and allocation

capabilities of various algorithms.

• Implemented and experimented with Stochastic Fairness Queueing (SFQ). Our

experiments show that SFQ provides fair utilization of available resources, prevents

starvation, and degrades gracefully under overload conditions.

• Implemented and experimented with a hybrid algorithm combining SFQ with

VirtualClock. This algorithm can satisfy the needs of both best-effort and reserved-

resource traffic. BBN plans to include it in an upcoming release of ST-II.

• Prepared an annotated bibliography of recent articles relating to congestion-control

and resource-reservation techniques in high-speed networks [Lee and Denny 1993].

4

3 EXPERIMENT SUPPORT

In this section, we provide an overview of our work relating to providing a software
infrastructure to support experiments on DARTnet. The main effort of this task was devoted to

developing a traffic generator that would allow a researcher to perform repeatable experiments.

After surveying existing tools, we noted the lack of suitable software for performing network

experimentation in a quantitative fashion. Researchers would use existing applications, such as

FTP and ping, to verify the functionality of a new algorithm; but there was no software to help them
evaluate the quantitative behavior in a consistent and repeatable manner. The Swedish Institute of

Computer Science Protocol Implementation Measurement System (SPIMS) was available, but it

has some shortcomings. In particular, the statistics are very high-level, such cumulative counts of

number of packets sent and received. The granularity of the information collected, therefore, is not

fine enough to determine the kind of behavior network researchers would be interested in, such as

delay characteristics and loss patterns. SRI, therefore, developed a general purpose traffic

generator and some associated tools for analyzing the log files produced by the traffic generator.
These tools are discussed in more detail below.

3.1 TRAFFIC GENERATOR

The TG is a tool for creating high-quality and repeatable experiments on packet-switched

networks; it can also be used to characterize the performance of packet-switched network

communication protocols. It executes as a source and sink program that enables experimenters to

generate one-way traffic streams and gather statistical data about the transmission and reception of

each stream. The TG program is controlled by a simple but flexible specification language that

allows access to different operating modes, protocols, addressing functions, experiment traffic

parameters, and execution times. At present, packet length and packet offer rate can be specified

according to the following distributions: constant, uniform, exponential, and 2-state Markov. Each

Markov state is associated with its own distribution, thereby allowing the nesting of different

distributions within the 2-state Markov. The TG relies on the Network Time Protocol (NTP) for

underlying synchronization.

Traffic sent and received by the TG is recorded in binary log files. Each log file contains the

time of an event, the event type, and the event data that is dependent on the event type. For receive

and transmit events, a datagram/segment identification number is printed. A filter program, dcat,

is provided with the TG; dcat converts binary TG output to an ASCII text file.

In the current version, packet traffic can be sent via the TCP, UDP, and ST-II protocols. As

new transport and network-layer protocols are developed, the TG can easily be enhanced to support

them. Applications that want to use TG can also be easily integrated by adding the appropriate calls

to the datagram or stream protocol structure.

The software was developed in C under SunOS 4.1.1 and thus should be easily portable to

other UNIX operating systems. It has been built for SGI machines and machines running Solaris

2.1 with minimum effort (without ST-II support since this is not present in those systems). The

software is also in the public domain. The users include

• The DARTnet community (SRI, Xerox PARC, BBN, LBL, MITRE, the University

of Massachusetts [UMass], UDEL, and ISI)

• Academic institutions (USC and the University of Maryland [UMD]-NASA Center

for the Commercial Development of Space)

5

• Commercial companies (3M Minnesota, Bell Northern Research [BNR] Canada,

Bellcore, Sequent, Wellfleet, and AT&T Research)

• Government facilities (CECOM; Rome Laboratory [Network Design Facility]; and

NRL).

The software release notes, which constitute a user's manual for the TG, can be found in

Appendix A. The source code for the TG and dcat is in Volume II, Section 2 of this report and is

available for anonymous FTP on ftp.erg.sri.com in the pub/tg directory.

3.2 ANALYSIS TOOLS

The ASCII files produced by the TG can be processed using other tools, such as perl, awk,

and grtool, to help interpret the information collected. To support our work involving baseline

measurements, SFQ, and the hybrid algorithm, we have written perl scripts that compute summary

statistics for the ST-II and UDP protocols. The statistics include average offer rate, average

throughput, average delay, and delay variance. The scripts also can produce tables that can be used

by grtool, a public-domain graphing tool, to graphically represent the data regarding throughput,

delay, and packet loss. These scripts have also been released to other members of the DARTnet

community to aid in the evaluation of their work.

The perl scripts can be found in Volume II, Section 3, and are available via anonymous FTP

on ftp.erg.sri.com in the pub/tg directory.

6

4 BENCHMARKS

In this section, we present an overview of our benchmarking work on DARTnet.

Benchmarking is important because it provides a means for evaluating the performance and

behavior of whatever is under test, whether it is the entire network or a specific algorithm or

protocol. Furthermore, scant information is available on the performance of newly developed

networking technologies and algorithms, because the preliminary efforts in development focus on

demonstrating and testing what a protocol or algorithm does, rather than how well it performs.

There is a need, therefore, to define a set of experiments that evaluate the performance of these new

protocols and algorithms and allow meaningful comparisons to be made.

4.1 CONGESTION AVOIDANCE TESTBED EXPERIMENTS

To satisfy this need, SRI has written a document that serves as an experimenter's manual by

def'ming a set of experiments that evaluate the resource allocation and reservation capabilities of

three different kinds of algorithms: best effort, type of service, and resource reservation. This

document, called Experiment Design for CA TE,* [McKenney and Denny 1993] is provided as

Appendix B to this report. The experiments are divided into three classes, according to the kind of

algorithm involved. Best-effort experiments assume all users have equal rights to network

resources, including traffic such as mail, where there are no hard requirements for delivery.

Type-of-service experiments assume that users have different rights to network resources; these

rights are expressed in terms of priorities, delay constraints, and throughput limits. These

experiments, therefore, test the ability of the algorithm to honor these type-of-service constraints.

Resource-reservation experiments assume explicit throughput reservation and evaluate the
enforcement of a reservation.

Each experiment is defined in terms of a general framework that includes the objective,

procedure, measurements taken, and desired results. The procedure is described in high-level terms

so that the document can be applied to different networking environments (for example, DARTnet

is an adequate environment for executing the experiments). Researchers can use these experiments

to quantitatively evaluate and compare the ability of an algorithm to satisfy the service demands

placed upon today's networks. Tables 1, 2, and 3 present an overview of the experiments defined

within the CATE document. These tables include each experiment's objective and the metrics used

to evaluate performance.

4.2 BASELINE MEASUREMENTS

As preliminaries to the more elaborate tests outlined in the CATE document, we conducted

simple baseline tests to characterize the packet-switching performance of DARTnet. All tests

utilized UDP because we wished to measure the performance of the network, not the transport

protocols.

The first test was designed to verify the operation of the network by providing an indication

of the throughput and transmission loss as a function of packet generation rate and packet size. The

tests were of a parameterized nature, varying the packet generation rates, packet size, and number

*CATE: Congestion Avoidance Testbed Experiments.

7

EXPERIMENT

Determining Overhead

Table 1. Best-Effort Experiments

=

o

Overload Behavior with Cooperative Sources

Overload Behavior with Uncooperative Sources • • • • •

Delay for Low-Bandwidth User • • • • •

Table 2. Type-of-Service Experiments

• • • • •

EXPERIMENT o o _ o°u. m

Honoring Priorities • • • • •

Honoring Delay Constraints

Honoring Throughput with Cooperative Sources • • • • •

Honoring Throughput with Uncooperative Sources

Table 3. Resource-Reservation Experiments

EXPERIMENT

Honoring Existing Reservations •

Blocking Correlation

Honoring Future Commitments •

°,! °,,i_, _ ° = o. _
" " _ _ _ _"=' _ =,- o,

• • • • • • •

• • • • • • •

• • • • • • •

8

w

ofT1 hops for a single traffic stream. A TG script sent 1000 UDP packets at a constant rate and

size. Sizes were 32, 64,128, 256, 512, 768, 1024, 1280, and 1500 bytes. Rates were 1, 2, 10, 20,

50, 100, 200, 500 and 1000 packets/s. For packet generation rates greater than 50 packets/s, a delay

of 10 s was inserted before the beginning of each new action. The most notable problem we

experienced was unexpected packet loss, even at loads below the capacity of the network (see

Appendix C, Subsection C.4, for an example).

We then designed a simple two-stream test whose total capacity was -1.26 Mb/s, to test the

behavior of the network with traffic in opposing directions utilizing one cross-country path and a

cut-through path (see Figure 2). The cross-country stream from SRI to UDEL used an exponential

distribution with a mean interarrival rate of 0.01 (100 packets/s) and a mean packet size of

576 bytes. The opposing exponential stream ran from ISI to SRI with a mean interarrival rate of

0.01 and a mean packet size of 1000 bytes. This test again pointed to large "blackouts" in the

network. Appendix C, Subsection C.4, contains graphs illustrating the blackouts in the network.

During some of our early experiments, we experienced out-of-order arrivals (see Appendix C,

Subsection C.4, for an example). This phenomenon would seem to be impossible, due to the linear

topology of the network, and we could find no explanation for it; however, it has not recurred for

quite some time. We note it here as an interesting anomaly.

Due to the fragility of the network at the end of 1991, we decided to pursue simple

measurements of network performance. To this end, we defined a test methodology for

determining throughput. The throughput of the network is defined to be the maximum point where

DARTnetl

Malarky

Ant

LEGEND

100 pps, 1000 bytes

100 pps, 576 bytes

Figure 2. Two-Stream Test Traffic Flow

9

delay is approximately constant and there is no packet loss (ideally). We then chose a technique to

measure throughput. We decided to fix the packet length and vary the offer rate until we found the

"-knee" of the curve. The point below the beginning of the knee is the throughput for that packet

size. Figure 3 shows the end-to-end delay for this experiment and illustrates the states during the

experiment and the point at which the throughput is established. Note that each interval marked on

the X axis indicates a new offer rate.

We then executed this methodology on DARTnet several times during the lifetime of the

project, using a constant distribution for interarrival rate and packet size and paths of two different

lengths. (See Figure 4.) This repetition was necessary because of changes in the configuration of

the network: modifications were made to the kernels to support new software and to fix bugs

discovered during the tests; the line speed was reduced as a work-around to solve a hardware

design problem in the interface board*; and service providers were changed. Figure 5 shows the

throughput obtained at 1.536 Mb/s and 1.344 Mb/s when Performance Systems, Inc. (PSI) was the

service provider, and at 1.344 Mb/s when the service provider was changed to Sprint.t

Appendix C, Subsections C. l, C.2, and C.3, contain the graphs obtained from these experiments.

Each run was executed at least twice, but only one run is recorded in the appendix, unless the runs

yielded markedly different results.

For these values, it is interesting to note that throughput increased as a function of packet size,

although we expected throughput to be relatively constant for the given offer rate. It has been

speculated that the increase might result from "bunching" of the packets at the source, due to the

granularity of the UNIX clock's interaction with the packet-scheduling algorithm of the traffic

generator. This theory has not been verified. Neither the length of the path, however, nor the line

speed, seem to have affected the results significantly. At most, the length of the path varied the

DELAY

MAXIMUM I

I I I I I
.q

UNDERLOAD OVERLOAD (PACKET LOSS OCCURS)

Figure 3. Determining Throughput

*The line speed was changed to 1.344 Mb/s to help reduce the possibility of overruns by providing more time to

move the data from the FIFO.

tWe were unable to complete the throughput measurements for Sprint, due to lack of funding, so we have included

only those packet sizes tested.

10

I_ MM6

(IPX)

Ant

Malarky
(IPX)

q_

.q

(.0

:.3

"5
o
.9

CL

O.gg

0.97

0.95

0.93

0.91

0.89

0.87

0.85

Figure 4. Throughput Traffic Flow

DARTnct UDP Capacity

SRI- >ISI. SRI- >DELAWARE
I t

°

0.0

, I J I J

500.0 1000.0 1500.0

Packet STze in Bytes (including heQders_- - - -,_ 1.556 Mb/s PSI

1,544 Mb/s PSI

• a_ t , _ ,,,, 1.J44 Mb/s Sprint,

Figure 5. DARTnet Throughput

11

packet/s count by only plus or minus one packet. This variation did not occur frequently. The lack

of perturbation to the throughput results due to line speed change is evident on examination of the

change in line speed from 1.536 Mb/s to 1.344 Mb/s. The reduction in throughput is proportional

to the change in line speed for the same provider.* The throughput reduction obtained when the

service provider changed has not been explained. Originally, we believed that the reduction might

be due to the addition of nodes to the network; but upon examining the software in the driver, we

concluded that this explanation was unlikely. No further work could be done, because of the

exhaustion of funds.

4.3 MEASUREMENT RESULTS

Our experiments revealed many problems with the network, as indicated above. Most of the

severe network blackouts, however, were caused by inadequate hardware. Many subtle problems

were uncovered that related to the design of the HSI board. Since then, the network has been

engineered to support testing in overload conditions by adding additional cards to the switch, so

there is one T1 card per line. The software driver has also been carefully modified to overcome

inadequacies in the design of the board. At the time of this final report, no known problems remain;

but the network has not been adequately tested or characterized for the current software and

topological configuration.

w

*The increase in throughput for 1500-byte packets was not investigated. It is assumed to be the result of a bug fix.

12

5 STOCHASTIC FAIRNESS QUEUEING

In this section, we present an overview of the work we performed on DARTnet relating to

traffic control. Traffic control is necessary, because current datagram networks are vulnerable to

congestive collapse when the offered load approaches or exceeds their capacity. Although several

end-to-end congestion-avoidance algorithms have been proposed, none of them has been shown to

perform optimally in high-speed, high-bandwidth delay product networks. This has led some

researchers to believe that source control of data flow is not enough and that the gateways must

also participate in congestion avoidance. To this end, it has been proposed that the gateways use a

fairness queuing algorithm to insulate users from the activities of other (possibly ill-behaved)

users. Fairness queuing, as originally proposed by Demers, Shenker, and Keshav [1989], is

inefficient because it requires each conversation to be mapped to a separate queue. Stochastic

Fairness Queuing, as developed by Paul McKenney [McKenney 1991] provides an efficient means

of dispersing traffic on a fixed number of queues and is suitable for high-speed networks.

5.1 OVERVIEW

SFQ is a packet-by-packet fairness queueing algorithm that uses a hashing function to provide

a simple mapping from source/destination address pair to a queue. The mapping is not guaranteed

to be unique, and the choice of hash function is critical to good performance. The hash functions

we have chosen attempt to maximize randomness in order to ensure different hash values for most

address pairs. In addition, the hashing seed is perturbed periodically to reduce recurring collisions,

thereby decreasing the chance that streams will fail to receive their "fair share" of the available

resources because they always share the same queue. The queues are serviced in round-robin
fashion.

The advantages of SFQ are that it is conceptually easy and fairly simple to implement. SFQ

is more efficient in space requirements and needs fewer memory references to find a queue than

strict fair queueing. Its simplicity may also make SFQ a prime candidate for hardware/firmware

implementation and thus a suitable candidate for high-speed networks. Furthermore, it would be

easy to combine it with other algorithms for improved performance. However, SFQ has its

disadvantages (1) for efficiency, the number of fixed queues must be large; (2) perturbation of the

hash seed must be done carefully, to ensure the ordered delivery of packets; and (3) SFQ provides

only a local means of traffic control.

5.2 IMPLEMENTATION

We completed an implementation of SFQ for the SunOS 4.1.1-based DARTnet kernel.

Although this implementation is based on SunOS, it should port easily to other platforms. Our

implementation consists of an array of finite-length queues and a doubly linked "active" list for

packet transmission, which includes only queues that are not empty (see Figure 6). The existing

UNIX queuing macros are replaced with a small set of macros and subroutines, which implement

the SFQ queuing discipline with the data structures outlined above. We also implemented several

nonrotating and rotating hash functions that use a seed and the source and destination IP address to

determine the queue. The nonrotating hash function may perform better; it is the one currently

used. Our first implementation relied on a simple mask to perform the final mapping from the

13

A B C D

Active List

Figure 6. SFQ Data Structure

results of the hash function to the bucket index. This method resulted in too many collisions, and

perturbing the hash seed did not change the behavior. We therefore changed the mapping from the

hash function to the queue size, so that it uses the mod operator. A software implementation that

works for an operand whose value is a (power of 2) plus 1 was written; the C-language operator

was not used because the SPARC implementation was considered too slow. Other improvements

are possible but have not been implemented. For example, the technique of dropping a packet when

a queue is full may be replaced by buffer stealing. In addition, the criterion for perturbation may

be changed. Currently, the seed is changed when all queues to an interface are empty, to prevent

reordering problems. In reality, this situation may never arise at a "busy" gateway; therefore, a

different criterion for perturbation should be investigated. The source code for SFQ is provided in

Volume II, Section 4.

5.3 EXPERIMENTATION

To verify SFQ's resource control mechanism, we performed various experiments on

DARTnet. These experiments were designed to show

• Fair utilization of available resources

• Prevention of starvation for streams whose demands are small

• Graceful degradation under overload conditions (as streams are added, bandwidth

used by each stream decreases fairly)

• Resource usage compared to FIFO queueing.

14

A report covering the experiments [Denny 1993a] is included in Appendix D. In general, the

experiments do show that SFQ is better than FIFO queueing at allocating bandwidth equally among

a set of flows. SFQ also prevents a stream from dominating the available bandwidth, which seems

to occur in FIFO queueing (i.e., if a stream demands more than its share of the available bandwidth,

with FIFO queueing that stream receives a disproportionate amount, compared to streams that

demand less than their share). Furthermore, SFQ seems to reward "nice" users of the network by

providing a lower variance in delay and more throughput when their resource demand is less than

their available share. Both SFQ and FIFO queueing seem to degrade fairly well as the network

becomes saturated, and to recover well as the network becomes less congested. Not unexpectedly,

FIFO queueing is a little more efficient than SFQ---FIFO delays are shorter and the throughput

slightly higher because SFQ requires more processing. However, the performance difference

between the two queueing disciplines is relatively small.

However, the experiments do point out some interesting behavior. FIFO queueing can behave

better than SFQ with seed perturbation. We recommend further evaluation of the hash function and

the seed perturbation technique: their current selection probably contains weaknesses that cause

this unexpected behavior. SFQ also seems to possess good scaling properties. To verify this, more

experiments with a larger number of streams from more hosts should be executed and examined,

including the staggered introduction of streams. Staggering the streams may prove important,

because graphs in the degradation experiment revealed some unexpected increases and decreases

in throughput, which should be examined. These phenomena may again be due to the interaction

of the hash function with seed perturbation, but may also be related to some other unknown

problem.

15

"lw

6 HYBRID ALGORITHM FOR BEST EFFORT AND RESOURCE
RESERVATION SERVICE

In this section, we present an overview of our enhancements to the general SFQ mechanism

discussed in the previous section. In particular, SFQ was designed to support best-effort traffic

(traffic that has no hard delivery requirements). However, new applications, such as audio and

video, require certain delivery constraints to be met that SFQ was not designed to provide. Many

new scheduling algorithms are being developed to meet these resource needs. A hybrid algorithm

combining the strengths of SFQ with a resource reservation algorithm would better meet all the

needs of the users of a network. The following section describes our new hybrid algorithm, which

combines the strengths of SFQ with a prototype resource reservation algorithm, and the results we

obtained from implementing and experimenting with this hybrid algorithm on DARTnet. A

detailed report [Denny 1993b] covering this work is included in Appendix E.

6.1 DESIGN

VirtualClock [Zhang 1990] was selected as the resource reservation algorithm to be combined

with SFQ, because other algorithms and approaches were not mature enough or were not in a form

that was available for our use. VirtualClock is a rate-based scheduling algorithm that orders packets

in a single queue according to a timestamp. This timestamp is based on the average arrival rate

specified in the reservation request. For the routers to receive this resource request, a mechanism

must exist to pass the flow specification. ST-II provides this functionality, and since a VirtualClock

implementation was included in the release of the ST-II protocol, we are using ST-II.

Since we decided to keep two logical queues, one for SFQ and one for VirtualClock, the

hybrid algorithm only requires the definition of the packet-scheduling algorithm that selects the

queue from which the next packet will be transmitted. Two different approaches were explored.

The first is a simple priority scheme where the VirtualClock queue always has priority over the

SFQ queue. The second approach is an attempt to provide "fairer" service. Reserved resource

traffic should meet its scheduling requirements; however, this should not be done in a manner that

could starve the best-effort traffic, as in the simple priority scheme above. (Such starvation would

occur in the case where the reserved resource traffic is high enough that there is always something

in the VirtualClock queue.) The second approach, therefore, tries to interleave the packets in both

queues while still guaranteeing the reserved resource traffic its average rate. To achieve this, we

reinterpreted the timestamp calculated by VirtualClock for packet ordering as the time to send this

packet as well. The scheduling algorithm, then, is as follows:

• If the VirtualClock queue is not empty, check the packet timestamp at the head of the

VirtualClock queue.

- If the packet timestamp is later than now and the SFQ queue is not empty, take

the packet from SFQ; otherwise, take the packet from the VirtualClock Queue.

- If the packet timestamp equals now or is earlier than now, remove the packet

from the VirtualClock Queue.

• If the VirtualClock queue is empty, try to remove the packet from SFQ.

17

Notethat thisalgorithmalwaystriesto f'mda packetto sendif oneis available.An improvement
to thealgorithmcouldbeamethodfor determininghow far in thefuturepacketsshouldbesent
from theVirtualClock queuebeforeabest-effortpacketis taken.This improvementwouldprevent
anyreservedresourcetraffic from being"late" becauseof abest-effortpacket.

6.2 IMPLEMENTATION

The prototype implementation of this algorithm was done in version 13 of the DARTnet

kernel, using release 1.12 of BBN's implementation of ST-II and VirtualClock. The code supplied

by BBN also included their traffic control interface abstraction, so we decided to try out their model

in our implementation of the algorithm [Lynn 1993]. This interface consists of a series of routines

that the algorithm designer must supply. This consisted of defining routines for initialization,

classification, enforcement, enqueueing, and dequeueing. We therefore defined a new interface

that included a joining of the calls provided in our previous implementation of SFQ and BBN's

implementation of VirtualClock. Of course, the dequeueing routine included the algorithm

described above, with subsequent calls to the appropriate queueing structure.

The main difficulty in our implementation involved the design of the dual queue. Much of the

code written within the kernel assumes that the pointer to the head of the queue is in the ifnet

structure. Since we had two different queues, this was not possible. However, as part of the design

of their traffic control abstraction, BBN extended the ifnet structure to include some space for

pointers that are algorithm specific. We used one of these pointers to hold the SFQ head pointer.

Any code that involved accessing the queue pointer was then carefully modified to take into

account this dual queue design. This modification also required changes to the HSIS driver and the

routine if_down in if.c.

6.3 EXPERIMENTATION

To evaluate the performance of our hybrid algorithm, we choose to use the default algorithm

in the traffic control interface that BBN supplied.* This baseline algorithm consisted of a single

queue where VinualClock and FIFO techniques were merged. Established streams in ST-II used

VirtualClock, while best-effort traffic used FIFO (any FIFO packets were always at the end of the

Virtual Clock queue). The other two algorithms under test consisted of the versions of the hybrid

algorithm described above.

The experiment was designed to demonstrate the two key design goals of our hybrid

algorithm. In particular, these goals are that

• Reserved resource traffic streams acquire their requested average packet-

generation rate

• Best-effort traffic streams receive the benefits of SFQ (streams receive equal

portions of the available bandwidth, and hosts that send less traffic than their

allocated bandwidth are rewarded).

*We originally planned to use a traffic control algorithm that only provided FIFO queueing and no resource
management for our baseline measurements. However, we experienced problems setting up ST-II streams with TG

for this algorithm. The streams could not be established, so we could not document this algorithm in this report. This

appears to be an ST-II implementation issue in the kernel, i.e., what the proper response should be if no resource

guarantees are ever possible.

18

In general, the results of the experiment we performed do show that one can effectively

combine SFQ with VirtualClock to achieve the benefit of SFQ (equal access to the available

bandwidth), while preserving the average rate requested by the reserved resource traffic.

Interleaving the two queues based on time did result in slightly better throughput than using a

simple priority scheme. We expect the interleaving algorithm to do at least as well as or better than

the simple priority version, under almost all conditions. Improvements to the interleaving process

are also possible. It may be better to compute a time into the future that should be used to choose

the queue from which the next packet is to be transmitted. This would reduce the probability of the

"late" delivery of a VirtualClock packet that inadvertently gets behind a best-effort packet.

19

7 CONCLUSION

In this report, we have presented our work on DARTnet. DARTnet is a valuable testbed that

allows researchers to gain experience and insight into network behavior for both existing and new

protocols and algorithms. Performing baseline measurements and experiments with our new

queueing mechanisms gave us some useful insights and we learned various lessons in the execution

of our tasks. We experienced at first hand the difficulties of fielding a new network. Experienced

network implementors using mature networking technology still must perform extensive

experiments to verify correct operation before they can begin the more complicated task of

evaluating protocols and algorithms, and understanding network dynamics. We also need better

tools to undertake this effort: better instrumentation in the switches, a better distributed model of

experiment control and traffic generation, automated collection of instrumented data, improved

post-analysis tools, and real-time visualization aids that display selected network information.

Furthermore, net synchronization aids in the analysis of the data; and the traffic generator relies on

Network Time Protocol (NTP) to synchronize clocks to the millisecond. Synchronization to one

ms currently takes about a day. However, synchronization to a "'few" milliseconds can be achieved

in about an hour. In a test environment, convergence time is important, because of the necessity of

switching kernels for different research efforts.

The current state of DARTnet, however, is unknown, because the kernel used in DARTnet

has changed since our measurements and testing with the new service provider was never

completed. These tests should be completed, to verify that no problems persist in the network.

Once this is done, researchers will have more confidence in their evaluation and testing of any new

protocols or algorithms.

Traffic control is a rich and important field of study that we are only beginning to explore. We

have shown that SFQ is superior to FIFO queueing in its distribution of available resources. SFQ

also can be implemented efficiently and can be effectively combined with other queueing

techniques. In particular, combining SFQ with VirtualClock can effectively satisfy the demands of

resource reservation traffic while providing best-effort traffic with equal access to the remaining

bandwidth. Interleaving the packets from the VirtualClock queue and SFQ seems to be better than

a simple priority scheme. Interleaving provides fairer access to the network by allowing best-effort

traffic to be sent as soon as possible, without interfering with the scheduling requirements of the

reserved resource traffic, and also achieves slightly better throughput than a simple priority
scheme.

However, more work is required. The current seed perturbation technique for SFQ is not

satisfactory because network congestion may result in "unfair" behavior: New techniques need to

be designed and tested. SFQ was designed to scale well; however, this property was never really

studied or tested and should be investigated before this technique is deployed in a large networking

environment. Our hybrid algorithm, which combines SFQ with VirtualClock, could probably be

improved by calculating a window during which the next virtual packet should be sent, so as to

prevent "late" delivery of the packet. A better mechanism for handling bursts of traffic should also

be developed. Currently, any packet that causes a stream with a resource reservation to exceed its

allocated limit during its averaging interval will be dropped. This method is inefficient, because

enough bandwidth may be available to handle the packet. Other approaches should be developed

21

and tested. For example, one could place this packet in the SFQ queue instead, although the result

may be out-of-order delivery. If this delivery order is important, it may be better to add some kind

of priority scheme to packets in the Virtual Clock queue, so that any packet over its limit is tagged;

then, if it becomes necessary to drop a packet, a tagged packet is fast chosen. Another issue that

should be examined is the following question: How does this type of approach fit in with a

hierarchical allocation policy where an agency wants to ensure its allocated share of the network

capacity? Finally, we need to experiment with other traffic control algorithms to compare their

performance with our hybrid algorithm and to understand their behavior in general. The CATE

document [McKenney and Denny 1993] provides a good beginning for these experiments and
should be used to this end.

22

REFERENCES

Clark, D., S. Shenker, and L. Zhang. 1992. "Supporting Real-Time Applications in an Integrated

Services Packet Network: Architecture and Mechanism," Proc. ofACM SIGCOM, pp. 14-26.

Demers, A., S. Keshav, and S. Shenker. 1989. "Analysis and Simulation of a Fair Queueing

Algorithm," Proc. of ACM SIGCOMM, pp. 1-12.

Denny, B.A. 1993a. A Report on Stochastic Fairness Queueing (SFQ) Experiments, ITAD-8600-

TR-93-62, SRI International, Menlo Park, California (March).

Denny, B.A. 1993b. A Hybrid Algorithm for Combining Best-Effort and Resource-Reservation
Service, ITAD-8600-TR-93-168R, SRI International, Menlo Park, California (October).

Floyd, S. 1992. "A Report on Link-Sharing Experiments," draft paper, Lawrence Berkeley

Laboratory, Berkeley, California.

Jacobson, V., and S. Floyd. 1993. Hierarchical Resource Management, unpublished work,

Lawrence Berkeley Laboratory, Berkeley, California.

Lee, D.S., and B.A. Denny. 1993. Annotated Bibliography for Congestion Control and Resource

Reservation, ITAD-8600-TR-93-74, SRI International, Menlo Park, California (March).

Lynn, C. 1993. "Net Interface Extension Memo," draft technical note, Bolt Beranek and Newman

Inc., Cambridge, Massachusetts.

McKenney, P.E. 1991. "Stochastic Fairness Queueing," in lnternetworking: Research and

Experience, Vol. 2, pp. 113-131.

McKenney, P.E., and B.A. Denny. 1993. Experiment Design for CA TE, ITAD- 8600-TR-93-191,

SRI International, Menlo Park, California (July).

McKenney, P.E., D.Y. Lee, and B.A. Denny. 1993. Traffic Generator Software Release Notes,

ITAD-8600-TN-93-28, SRI International, Menlo Park, California (1 February).

Topolcic, C., ed. 1990. "Experimental Internet Stream Protocol, Version 2 (ST-II)," RFC 1190.

Zhang, L. 1989. A New Architecture for Packet Switching Network Protocols, doctoral

dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Zhang, L. 1990. "VirtualClock: A New Traffic Control Algorithm for Packet Switching

Networks," Proc. of ACM S1GCOMM, pp.19-29.

23

Appendix A

TG USER MANUAL

,qmt

Traffic Generator

Software Release Notes

Paul E. McKenney

Danny Y. Lee

Barbara A. Denny
Information and Telecommunication Sciences Center

SRI International

Menlo Park. CA

Febrllary 1, 1993

2

1 Introduction

This document describes a packet Traffic Generator (TG) program that call be used to

characterize the performance of packet-switched network communication protocols. The

TG program generates and receives one-way packet traffic streams transmitted from the

UNIX 1 user process level between traffic source and traffic sink nodes in a network. Dif-

ferent protocols, or versions of the same protocol, may be tested to ascertain differences in

performance.

The TG program is controlled by a simple, but flexible, specification language that

allows access to different operating modes, protocols, addressing functions, an([experiment

traffic parameters. The specification language Mlows traffic of several different packet

lengths and interarrival time distributions to be generated. In the current implementation,

the TCP and UDP transport protocols and raw ST-II protocol are supported.

While the name "Traffic Generator" focuses on the packet generator aspect, of the pro-

gram, the TG program also serves as a traffic sink. In order to record packet transmission

statistics, a TG configured as a traffic sink must be active to receive the test traffic. The

received traffic stream is logged in a file by the traffic sink for post-test analysis. When

connection-oriented transport services are used, a traffic sink is needed to accept an incom-

ing connection request. The TG serving as the traffic source always logs datagram transmit

times. This mode of operation may be useful for analyzing network blocking characteristics

or for loading a network.

Depending upon whether connection-oriented or connectionless transport, services are

used, one or more traffic sinks may be needed. For datagram protocols like UDP or ST-

lI, multiple traffic sources may send their traffic to the same sink process (a many-to-one

relationship). The TG serving as a traffic sink logs all received data.grams.

When TCP protocols are used, there must be a one-to-one lnapping between a traffic

source and a traffic sink for each connection. Each invocation of the TG program is able

to sustain a single stream: the TG is currently unable to service more than one active

connection at a time. Consequently, if two connections are desired between a pair of nodes,

two traffic sinks are required.

2 User Guide

This section describes how t_o use t_he TG program. We describe the function of the TG

program a.nd the svntax of its command specification language.

Note that kevwords and names of programs are shown in typewriter tbnt, while param-

eters (values that, you supply) are shown in italic font. Optional parameters are enclosed in

I UNIX is a registered trademark of UNIX System Laboratories. Inc.

brackets []: theseparametersmay besafelyomitted. During our discussionof the syntax

of TG specification and log files, angled brackets < > are used to delimit metavariables.

In our discussion, all numeric parameters can be entered as decimal, octal, hexadecimal

integer, or floating-point numbers. In general, a number may be an integer (1), a decimM

(1.0), or a floating-point number (1E-3). Octal (010) and hexadecima[(0x 10) numbers are

also supported, although they are not too useful for our application.

All time values supplied to the TG program are expressed as hours:minutes:seconds

(H:M:S) separated only by colons and without intervening white spaces. These tirne fields

are not limited, so you can if you desire work only in seconds or minutes.

If the H:M:S time format is not followed, the fundamental unit of measure for time

defaults to units of "seconds," or fractions thereof. Note that the unit of measure for the

packet size random variables is bytes.

Internally, the TG deals with most parameters as double precision floating-point values,

so that even very small values are represented correctly. The precision of a number will be

preserved, in spite of the potential inability of a system to generate packets at the specified

resolution.

2.1 Software Distribution Hierarchy

The software distribution hierarchy consists of several top-level directories, which tbllow

common UNIX conventions. Two programs form the TG distribution: the first is the

traffic generator (tg). and the second is a filter (dear) for reading TG log files.

The directories and their contents are as follows.

• ./bin - Executable versions of SunOS '2 4.1.2 binaries

• ./does-- Documents and other notes

• ./examples - Sample TG specification files 3

• ./sre - Source code for the TG program.

2.2 Building the TG Program

The TO is released with source code so that enhancements can be added to support new

protocols or additional statistical distributions that mav be needed for future experimenta-

tion. Note that the TC distriblttion includes compiled SunOS 4.1.2 bina.ries in t l_e ./bin

directory.

eSunOS is a trademark of Sml Microsystems. Inc.

aTG specification files are also referred t.o a.s scripts.

4

To rebuild tile traffic generator, changeto the ./src directory and executethe make
command. Your system will also need the :].exand yacc programs to rebuild the TG
program. Note that the softwarehasbeen compiledand tested only on the SunOS4.1.2
operating system:however,the softwareshouldwork on other BerkeleyUNIX-basedoper-
ating systems.

2.3 Invoking the TG

The syntax for invoking the TG program is a.s follows:

tg f-f] [-1 input-fie] [-o output-file]

By default, the TG program reads the standard input (stdin) device for a TG specification

file and writes its log file to the standard output device (stdout). The traffic generator

accepts the -i and -o options, which override the default input/output behavior. The -i

option specifies an input file that contains TG test specification entries. The destination

of the log file can be changed with the -o option. The -g option specifies that the buffer

be flushed to the log file after every write.

Alternatively, specification and log files may be stored on disk by using the I/0 redi-

rection features present in many command interpreter shells. For example, the following

command in the UNIX csh redirects the contents of input-file into the traffic generator

program, and writes the log file to output-file.

tg < input-file > output-file

2.4 TG Specification File

A specification file consists of entries in the following forms, and in the order specified:

< ._tart-tirne >

< association-spec >

< tg-action-list >

The .__tart-time clause indicates the time that a test run is supposed to start, relative

to the l.ime the clause is parsed. Upon satisfying the start-time clause, t.he actions listed

in the association-spec and tg-action-list clauses are executed. Before test, traffic can be

generated, an association-spec entry must be provided to specify an association, or binding.

between a traffic source and a traffic sink. The a.ssociation-spec a.lso provides the ancillary

test parameters used in a test session. The tg-actio_-Iist is a list of tg-aclio_t clauses: each

clause specifies an action to be performed, such as causing the TG progranl to generate

test traffic with specified distributions.

A file inclusion capability is supported, which allows the T(', specification 1.o be con-

t.a.ined in multiple flies. A line of the form

5

include "'file na:me"

causes the named file to be read and parsed. Double quotes must enclose the filename.

The maximum depth of inclusion is precompiled into the program and Call be changed by

redefining MAX_XNCLUDE_J..EVEL.

2.4.1 Starting Time

The experiment starting time is specified relative to the current time as an offset value.

The offset value is in modulus-time form, where the supplied parameter specifies the next

time boundary that an action will take place. The syntax for the start time is

on H:M:S

During an invocation of the TG, the on clause can appear at most once in a specification

file.

This scheme is relatively independent of local time. The advantage of the scheme is that

it allow scripts to be rerun without modification. It also allows scripts to synchronize to

within a few milliseconds of each other, despite having been started several seconds out of

synchronization (e.g., due to network delay to geographically remote hosts, or "telephone

slew" between human operators). The quality of the synchronization is limited only by

the ability of the time protocol (e.g., Network Time Protocol) to synchronize time, and by

operating-system factors such as scheduling granularity and delays.

For example:

on 15

starts at tile next fifteen-second interval(x:O0, x:15, x:30, or x:45),while

on 1:00

starts at the beginning of the next minute.

For the very patient:

on i:00:00

starts at the beginning of the next hour.

After the on clause has been satisfied, the association-spec and tg-actim_-Iist in the

following lines are executed. Note that the on clause is designed to provide session-level

svnchronizat, ion between t,he TG processes, and does not cause traffic to be generated.

Traffic is not. generated until a.]g-action clause has been parsed, as discussed in Section 2A.3.

6

2.4.2 Association Specification

,411 assoriation-spec is a binding betw_n a tra_c source and a. tra._c sink. An association-

._pec may take one of the following two forms:

protocol local-addres._ server [quality-of service]

or

protocol remote-address [quality-of-service]

Traffic Source/Sink Modes. The TG program can serve both as a traffic source and

a traffic sink. The word server in the first form of the association-spec clause is a keyword

that indicates that the traffic generator should act a_ a traffic sink. Once in the server

mode, the TG program will wait indefinitely for incoming connections or traffic.

In tile traffic sink mode, the TG acts upon the received messages a_ appropriate. In

some cases, response traffic is returned when the sink is in the Ynteraclzive mode. When

a response is required, the server responds with a packet of the length specified in the

tg-action-list entry.

When the server keyword is used, the local-add1_.s.s field is used to specify the local

address at which the TG will accept traffic. The address must be for the local host, as the

TG binds to the named port. Note that the IP address may be specified as 0.0.0.0.

Protocols. The protocol argument is a string (such as top, udp or sl;raw) that selects

the appropriate transport-layer protocol to be used to carry the test traffic. The current

implementation supports only TCP, UDP and raw ST-II protocols; however, the internal

protocol table ma.y easily be expanded to accommodate new protocols as they are developed.

Addressing. The current implementation does riot resolve host names. All addresses

must l)e supplied in the standard Internet dotted address form (e.g., 128.18.4.100.1234).

Note that the port number is appended to the address. For example, the address

128.18.4.100. 1234 specifies a rendezvous point, of port 1234 at the host with the ad-
dress 128.18.4.100.

Traffic streams are multiplexed by protocol port addresses. In many UNIX implemen-

tations, port numbers less than [024 are privileged and can only be accessed by programs

with root, access privileges. It is recommended that port numbers between 1024 and 916 _ l

be used. [f a port. is already beillg used. select a different port number and reexecute the

program.

The rcmole-addre,_._ field select._ t,he destination endpoint of the association: e.g., the

destination of a datagrana or a peer in a connection. (Support for one-to-many ST-II

streams is not yet av_ilable in TC.) Note tha.t addresses used in the association specification

includ_ • the port Jluml)er. The e×amplt' below sets up t.he 'FC program so that subsequent

transnlissio_ls a.l'e sent to the process r_mning Oil 128.18.6.10{) and listetling at port 2345.

udp 128.18.4.29.2345

7

Quality of Service. Tile quality-of-service (QOS) field consists of tile following

entries, specified in any order:

average bemdvidth number

peak bandwidth number

average delay number

peak delay ..umber

average loss number

peak loss number
in%erval number

m%u number

rcvwin number

sndwin number

These options were designed to serve as subscription/connection setup time profiles. In

the current TCP and UDP protocol implementation, these QOS options may be omitted.

Eventually, these options may be used or ignored as the protocol's connection setup function

sees fit. Currently only rcv,,rin and sndwin are supported under the TCP protocol. These

fields control the number of bytes in the receive and send window. All other options are

ignored, though the numbers are parsed and inserted in the protocol data structure.

The ST-II protocol uses some of the QOS options to specify the resources that should

be reserved for the flow. The atu option must be specified and is interpreted as the average

packet size in bytes teven though the name implies otherwise). The interval option must

be specified as seconds between packet arrivals and is used to compute the average packet.

rate. The minimal required bandwidth in number of bytes per second may be specified

by either the peak bandwid'eh option; or (if it is not specified) the average bamdwidth

option: or (if it is not specified) the product of the packet size and rate from the mtu and

interval options. Note that these options are used to specify the reservation, not the

actual traffic profile.

2.4.3 TG Action List

Traffic is generate,I via./g-actio.n-list clauses. The/g-aclion-/is/is a list of tg-actio,_ elements.
each of which consists of

[a-t /i,n,:-literal] tg-action

The optional at clause specifies a time relal.ive to the sta.rt time that the associated tg-

actio,, will execule. The ti-me-lileral is a time specified in the H:M:S colon [ormat. If the

at clause is omitted. 1.he action wilt commence upon completion of the previous action.

A tg-actio', consist.s of either

i

8

by itself or

setup

by itself or

wait [time-literal]

arrival di.stribution

length distribution [responselength distribution [patience ti'me-tite,'al]]

in that order. These entries may be followed by a list of any or all of the following, specified

in any order:

data number

packet number
seed hum.bet

time /ime-literal

The setup clause forces an association setup to occur. If no setup clause is present, an

implicit setup will occur at the time specified by the on start-time clause. It is illega.1 to

have more than one setup clause: if a setup clause is present, it must, precede all tg-action

clauses that generate traffic.

The wait clause causes the traffic generator to pause, as specified by the time-literal

argument, or by the succeeding at clause (or torever, if there is no time-literal argument

and this is the last t.q-action: this is useful for servers). The arrival clause specifies the

interarrival time distribution, and the length clause specifies the packet length distri bution.

If the responselength clause (which may be abbreviated resplen) is present, then ea,:h

packet sent will contain an integer selected from the corresponding distribution and enco_ted

suitably for stream protocols. If. in addition, the patience clause is present,, the traffic

generator will expect, to receive a packet of the specified length within the specified time,

aborting if its patience is ever exhausted. The data clause limits the total amount of dat.a

to be sent in bytes (mimicking, for example, a file transfer operation). Similarly. the packet

clause specifies the number of packets to send. The seed clause sets t,he random-number

generator seed (before generating random variables for the arrival and length clauses): while

the time clause limit.s the total amount of time spent transmitting.

_:here possible, the program attempt, s to deduce implicit time clauses a.nd at clauses

fi'om those of surrounding ty-aetion-li.W clauses: in the following example, ded,wt, iotl is ,or

possible:

arrival exponential 0.030 length 120

data I000000

arrival exponential 0.060 length 240

9

Tile program cannot know in advance how long it will take to send one lnillion I)vtes of

data, through the network.

2.4.4 Statistical Distributions

Statistical distributions can be associated with packet interarrival and packet length ra.ndom

variables. The interarrival distribution is specified with the keyword arrival, while the

packet length distribution is preceded by the keyword length. Currently, four types of

distributions are supported--additional distributions are planned and will be added when

implemented. Four keywords are used to specify the distribution that can be used with a

tg-action clause.

conslzant value or value

uniform max or uniform rain maz

exponential mean or exponential m.ean rain m.a:r

markov2 number distribution number dis/ribution

The cons_can_ distribution always returns the number specified in the supplied pa-

rameter: and if desired, the constant keyword may be omitted entirely. The uniform

distribution requires a number specifying the maximum value of the open interval [0, maz)

from which the random number is to be drawn. [f the left endpoint is also specified, a ran-

dom number is selected from the open interval [min, max). The exponential distribution

is the classic distribution with the'. specified mean. As with the uniform distribution, it is

possible to restrict the values that, are returned fi'om the exponential distribution to only

those within the open interval [min, max): the exponential distribution is unchanged other-

wise. Specifying an upper limit ['or the exponential distrib,ltion will force only reasonably

sized packets to be issued: otherwise there is a small probability that, an infinite size packet

may be generated, and which will result in a.n error being reported. The markov2 keyword

specifies a two-state markov distribution: the first number gives the mean time in state 1:

the second number gives the mean time in state 2. Each state is associated with its own

distribution: these distributions could themseh'es be markov2 distributions, if desired. As

shown above, the italicized parameler distribution is a placeholder for a keyword from the

set: constant, uniform, exponential, and markov2.

2.5 Examples

The following simple example illustrates the specification entries for a T('P traffic source.

on 0:15

top 128.18.4.97.2345

at 5 se%up

t0

at 6 arrival exponential 0.I length exponential 576

seed 321423 time 10

The on 0:15 command instructs the TG program to wait until the next 15-second time

boundary approaches before initiating any protocol activity. Since the keyword server

is absent in the association-spec line, TG will initiate a TCP traffic connection to the

node address 128.18.4.97, port 2345. The setup command, which is activated 5 seconds

alter synchronizing on the closest 15'second boundary, initiates a connection request to

the traffic sink node. One second later, traffic will be sent across the connection with an

exponential interarrival distribution with a mean of 0.1 seconds. The TCP segment size

is also exponentially distributed with a mean of .576 bytes. The last line sets the random

number seed and limits the test duration to 10 seconds.

A TG must serve as a traffic sink, before TCP traffic can be exchanged with the traffic

source. The specification entries for a traffic sink are simpler, and are as follows:

on 0:15 tcp 128.18.4.97.2345 server

at I.I walt

Note that the server keyword is present, and that the TG enters into the TG wait state,

1.1 seconds after the start time synchronization boundary.

Other examples of TG scripts can be found in the ./examples directory supplied with

the software distribution.

3 Log File

The TC program records all notable events in a. log file for post-test a nMysis. With the

exception of the header descriptor, the TG log file is encoded in binary [brm to conserve

storage space. Some binary fields are encoded with a variable-length code for additional

space savings. Such fields are stored as a sequence of bytes: seven bits per byte in little-

endian format. The sign bit is set to one. to indicate that the field continues into the next

byte, or cleared to zero to indicate that this is the last byte forming a number. Note that

the value of the number is unaffected if the last byte is 0x00. This allows a trailing 0x00

to be ,_sed to flag the number as being special in some way.

In general, the supplied dcat program should b,_ used to expand a T(', log file into read-

able text form. The dcat filter is distributed with the release iu the ./b'.n and ./src/dcat

directories.

3.1 Log File Header

An .-kS('ll header prefaces each log file and provides general information about the test

session that generated the log data. The information stored ill the header of the log file

i

i
i

l_

1

-k-

i

l
i
X._

11

includes the following:

• Header file version

• Version of the TG program used

• Name of the host that collected the test data

• Start time of the test

• Name of the protocol under test

• Address family indicator

• TG specification file.

The ASCII header portion of the log file may be viewed directly by using the UNIX

filter head to extract the first several lines of the file. The ASCII header is delimited by

the strings <Begin TG Header> and <End TG Header>. Note that the first character on

the next new line following the ASCII header contains a binary TG log record.

3.2 Log File Record Format

The dcat program converts TG log records into a readable ASCII format and prints its

output to stdout. The output from the dcat program can be fed into awk or other similar

string processing programs, dcat output lines have the following format:

<Event Yimestamp> <Event Type> <Address> <Event Data>

An example of the output from the dcat program is shown below.

Time Type Address Id Length

0.003678 Setup

10.061812 Accept

11.041100 Transmit

ii.041244 Receive

16.006682 Teardown

128.18.6.90.1626

128.18.6.90.2346

128.18.6.90.1626

Association 4

0 1460

0 1460

Event Timestamp. The event timest.amp field is printed a.s the ,mmber of seconds

since the start of the test run: that is. the t.ime since the on clause was satisfied. Note that

the event timestamp is not specified relative to the at clause. Although the timestamp

field is printed with microsecond resolution, the actual precision of the timestamp depends

upon the granularity returned bv the gettimeofday system call.

Event Types. TG event types inchtde the majority of the common e\'e,lls ,.hat. can be

observed from the [;NIX user-process level. The event types incl,lde the following:

i
I
1__

12

• Receive--indicates +t packet was received.

• Transmit -indicates a, packet ha.s been transmitted.

• Setup--indicates protocol initializa.tion is complete.

• Accept--indicates a connection has been established.

• Teardown--indicates a connection has been torn down.

• Error--indicates an error in the program was detected.

Addresses. The address field specifies the TG peer that generated the event. Depend-

ing upon the event type, the address may indicate the source of a received packet or the

destination of a transmitted packet. Addresses take the form of an Internet address with a

port number appended to it.

Event Data. Event data are present only for certain event types. For Receive and

Transmit events, a datagram/segment identification number is printed. The length of"

the received datagram/segment is also printed. For Accept events, the address of 1,he

connection peer is printed, together with the association number. For SeCup and Teardor, m

events, no other data is provided.

An identification number is used to reference a datagram or a segment within a stream.

For stream protocols, the identification field specifies the position of the first received byte

in the stream: consequently, the identification field added to the length field gives the total
number of bvtes transferred at the event time.

.-in Error event type is also provided to record errors as they occur during the execution

of the program. Depending upon when the error takes place, an address may or may not

be recorded in the log file. The error codes ave described in log.h and are reprinted below.

#define LOGERR_INTFMT 1

#define LOGERR_MEM 2

#define LOGERR_2SETUP 3

#define LOGERR_GETTIME 4

#define LOGERR_SELECT 5

#define LOGERR_FCNTL 6

#define LOGERR_GETPEER 7

/* Script format error */

/* 0ut of memory */

/* Two connections were established */

/* gettimeofday() failed */

/* select() failed */

/* fcntl() failed */

/* getpeername() failed */

3.3 Internal Log File Format

For those wishing to write their own filters or data manipulation programs in order to

process a log file directlv, tim log file is organized a,s a sequence o[records, with each record

having as a minimunl the record t,yl_e. control, a.nd timestamp fields.]'he [brm of the

13

i
J

l

1
i

binary log file is similar to the tables printed by the dcat program. Tile source code in l:he

dcat filter should provide a good starting point. The format is as follows.

< Receive > < Control > < Time > < Address > < Id > < Size > [Errno]

< Transmit > < Control > < Time > < Address > < Id > < Size > [Errno]

< Setup > < Control> < Time > [Errno]

< Teardown > < Control> < Time > [Errno]

< Accept > < Control > < Time > <Address > < Association > [Errno]

< Error > < Control > < Time > < Address > < Error Type >

C,onsult the tg and dcat source code ['or the elaboration of each field. As detailed above,

the [grrno] field holds the UNIX error number, and will very likely not be present in most
records.

4 Concluding Comments

The T(; software distribution is available from sparkyfs.erg.sri.com (L28.18.4.39) via anony-

mous FTP. The TG software is provided "'as is" without express or implied warranties. SR[

International (SRI) will not be held responsible tbr loss of data. or inaccuracies resulting

fi:om the use of this program. Although SRI does not support the software, we welcome

your comments and bug reports. If you use this software, please register your name and

address with SRI bv sending electronic mail to "dartnet_erg.sri.com " so that we can notify

you of updates and software bugs.

Appendix B

BENCHMARK DOCUMENT

-2"

Technical Report ° July 1993

EXPERIMENT DESIGN FOR CATE

Paul E. McKenney, Senior Systems Programmer
Barbara A. Denny, Computer Scientist
Information and Telecommunications Sciences Center

SRI Project 8600

ITA D-8600-TR-93-191

Prepared for:

National Aeronautics and Space Administration
Ames Research Center

Moffett Field, California 94035

Attention: Dr. Henry Lure, Code RI, M/S-244-7

and

Advanced Research Projects Agency
3701 North Fairfax Drive

Arlington, Virginia 22203-1714

Attention: Dr. Paul Mockapetris

Approved:

Michael S. Frankel, Vice President and Director
Information, Telecommunications, and Automation Division

1 INTRODUCTION

Network performance and behavior are key concerns to network researchers, implementors,

and users alike. As we move toward higher- and higher-speed networks, new architectures and

protocols are being designed to address the issues inherent in the uses of the technology.

Researchers are developing new solutions to the problems created by using these new technologies

and the demands placed on the networks by new applications, such as voice and video. Eftbrts by

various researchers, however, still focus on demonstrating and testing what a protocol does. rather

than how well it does it. There is a need, therefore, to define a set of experiments that evaluate the

performance of these new protocols and algorithms and allow meaningful comparisons to be made.

SRI International (SRI) is pleased to submit this document, which serves as an experimenter's

manual by defining a set or" experiments that evaluate the resource allocation and reservation

capabilities of three different kinds of algorithms: best effort, type of service, and resource

reservation. By executing these experiments, researchers can quantitatively evaluate and compare

the ability of these algorithms to satisfy the service demands that today's networks need to address.

These experiments are known collectively as the Congestion-AvoMance Testbed Experiments

(CA TE).

A general framework for defining an experiment is presented in Section 2. Briefly, for each

experiment the objective, procedure, measurements taken, and desired results are provided. The

procedure is described in high-level terms so that the document can be applied to different

networking environments. Definitions of the measurements are found in Section 2, 'along with

suggested programs tbr performing the experiments and obtaining the desired measurements for a
UNIX-based envtronment.

The actual experiments are divided among the next three sections according to the needs the

algorithms address. Best-effort algorithms (Section 3) assume that all users have equ',d rights to

network resources, and include applications such as mail, where there are no hard requirements for

delivery. Type-of-service algorithms (Section 4) assumc that users have different rights to network

resources and that thcse rights are expressed in terms of priorities, delay constraints, and

throughput limits. Resource reservation algorithms (Section 5) support explicit throughput

reservation with respect to time. The experiments in the different sections can be applied to

algorithms designed for different needs, to test the "algorithms' ability to meet those requirements
as well.

As mentioned previously, CATE can be used in many different networking environments (for
example, DARTnet' [described belowl) since minimal assumptions are made concerning

resources or topology. The only real resource constraint is the experimenter's ability to generate

enough trMfic to saturate the capacity of the network being used and to have sole access to the

network(s) in which the experiments are performed. The necessary topology has been kept as

simple as possible, so that only the availability of a single, fixed-path route is assumed. Some

experiments, therefore, are not included (for example, the adaptability of the algorithm is not
tested).

*All pr_xluct names mentioned in this d,x:ument are the trademarks of their respective holders.
+DARTnct: the DARPA (now ARPA) Research Testbed Network.

DARTnet is an experimental platform for network research in trat'fic control, resource

management, routing algorithms, and advanced networking applications. It is a cross-country TI*

network that connects research sites via TI tail circuits. Figure 1 illustrates the current DARTnet

topology. This network provides sufficient resources to execute CATE.

LBL

SUN

AMES

SRI

XEROX

BBN l/ BELL

i I

LBL: Lawrence Berkeley Laboratory LA POP:
MIT: Massachuaetts Institute of Technology DC POP:
BBN: Bolt Beranek and Newman Inc. UDEL:

BELL: Bellcore, New Jersey SUN:
AMES: National Aeronautice and Space Administration XEROX:

Ames Research Center ISI:

Los Angeles Point of Presence
Washington, DC Point o! Presence
University of Delaware
Sun Microsyetems, Inc.
Xerox Palo Alto Research Center, California
Information Sciences Institute,
Universih/of Southern California

Figure 1. DARTnet Topology

2 EXPERIMENT OVERVIEW

This section provides the general framework that will be used to describe the experiments in

the following sections, the elements and techniques common to every experiment, and a summary

of the experiments. For each experiment, the objective, procedure, measurements taken, and

desired results are provided. To apply this document to a specific network requires an explicit

description of the traffic conditions during the time of the experiment, including the source and

destination of each stream and traffic characterization. Since no assumptions are made about the

network(s) being tested, traffic conditions are not discussed in this report. It is assumed that each

experiment will be run at least twice for every algorithm under study. More runs may be necessary

if the results of the runs vary too greatly. It is also assumed that each experiment will study the

behavior of at least two competing algorithms: one of the algorithms will be considered a baseline

to which the other algorithm is compared. For example, First-In First-Out (FIFO) zmd Stochastic

Fairness Queueing (SFQ)" may be the two algorithms under study for the bcst-efl-brt experiments.

The remainder of this section presents an overview of the material covered in each experiment and

the procedure for gathering the metrics used in a particular experiment.

*Due to hardware constraints, the network currently operates at 1.344 Mb/s inste_ld of tile stzmd,'trd T I ratc of

1.536 MtVs.

_McKenney. P. 1991. 'Stochastic Fairness Queueing,'" in lmernetworkmg." Research and Experience, Vt)l. 2,

pp. 113-131.

2

2.1 OBJECTIVE

For each ex periment, an objective must be stated. This objective will demon strate a principle

relating to the 'algorithm, such as the ability to honor future reservations.

2.2 PROCEDURE

The traffic flow during the experiment is dependent on the topology and bandwidth of the

network under test and the objective of the experiment. Since we are not making assumptions about

the network on which these tests are run, no specific scenarios are provided. However, the general

conditions and the approach will be described. It is 'also suggested that each stream exist for at least
240 seconds.

To obtain the measurements described below in Subsection 2.3, it is assumed that some kind

of traftic generator will be used. For repeatability of the experiments, we suggest using the

SRI-developed Traffic Generator (TG). The TG is a tool used to create high-quality and repeatable

experiments on packet-switched networks. It executes as a source and sink program that enables

experimenters to generate one-way traffic streams and gather statistical data about the transmission

and reception of each stream. The TG is driven by a control language (script) that specifies

different operating modes, protocols, addressing functions, traffic parameters, and execution times.

At present, packet lengths and packet offer rates can be specified according to the following

distributions: constant, uniform, exponential, and 2-state Markov; the supported protocols are

TCP, UDP, and ST-II.* The measurements, therefore, are from user process to user process. This

tool is publicly available via anonymous ftp from sparkyfs.erg.sri.com.

2.3 MEASURED PARAMETERS

The experiments rely on measured parameters, i.e., metrics, to determine the effectiveness of

the algorithm under study. These metrics, which are discussed in more detail below, currently
include

• CPU idle time

• End-to-end per-packet delay

• End-to-end delay variance

• End-to-end packet loss

• End-to-end throughput

• Offer rate

• Offer load

• Fairness

• Path utilization

• Conversation-setup delay

• Blocking probability.

Each experiment described in this document is expected to use these detinitions, and the suggested

parameters below, in its execution.

*TCP: Tnmsmission Control Protocol; UDP: User Datagram Protocol; ST-II: Stream Prot(x:ol. Version 2.

3

CPU idle time provides an indication of the complexity of the algorithm. If both the idle time

and the link utilization are low, the router rather than the links is the bottleneck and thus the

algorithm may be unsuitable. It" both the idle time and the link utilization are high, the algorithm is

extremely efficient and may be suitable for use in a high-speed network. The idle time may be

measured via the UNIX command vmstat. For all experiments in this document, a measurement

every 10 seconds is expected (vmstat 10) on each router involved in the experiment.

End-to-end per-packet delay, end-to-end delay variance, end-to-end packet loss,

end-to-end throughput, offer rate, and offer load are computed from traffic traces. These traces

may be from the traffic generator used in the experiment (see Subsection 2.2) or may be gathered

using the program tcpdump, for example. Offer rate is the number of packets per second generated

at the source; offer load is the bandwidth requested by the source.

Fairness is defined according to the max-rain model developed by Bertsekas and Gallager.*

This model tries to maximize the allocation of each user, subject to the constraint that an increase

in one user's (i's) "allocation does not cause a decrease in some other user's allocation that is already

as small as i's or smaller. Figure 2 provides an example of a fair allocation according to this model.

Fairness for a given conversation is computed by considering the throughput at the conversation's

bottleneck link. The ratio of the largest throughput for any conversation to the throughput of that
conversation at the bottleneck link is the measure of fairness for that conversation. Network-wide

fairness is the average fairness for all conversations, weighted by each conversation's duration.

[,,N]
l] IOL:l,.

/ i.,
in RL = 30% "_-

AMES LA POP DC POP UDEL

OL; O. I"
I |

SUN_ ARPA

OL

RL

LINKS

TRAFFIC STREAMS

OFFER LOAD (PERCENTAGE OF CAPACITY)

RECEIVED LOAD (PERCENTAGE OF CAPACITY)

Figure 2. Max-Min Fair Solution

*Bertsekas, D., and Gallager, R. 1987. Data Networks, Prentice-Hall, Inc., Englewcx_ Cliffs, New Jersey.

,,4

V

4

Path utilization for a given conversation is the overall utilization of its bottleneck link. As

with fairness, network-wide path utilization is the average path utilization for 'all conversations,
weighted by each conversation's duration.

Conversation-setup delay is the time starting when an application requests a reservation and

ending when the request is either granted or denied. If the application chooses to block until the

reservation can be honored, then there may be an additional conversation-blocking delay, which is

the time starting when the request is initially denied and ending when the request is finally granted.

Blocking probability is the probability that a reservation request will not be immediately
granted.

The following tables (Tables 1, 2, and 3) summarize the application of these metrics to the

experiments found in Sections 3, 4, and 5.

Table 1. Best Effort Experiments

EXPERIMENT DEFINITION

Determining Overhead Subsection 3.1

Overload Behavior with
Cooperative Sources Subsection 3.2

Overload Behavior with
Uncooperative Sources Subsection 3.3

Delay for Low-Bandwidth User Subsection 3.4

5

Table 2. Type-of-Service Experiments

EXPERIMENT DEFINITION

Honoring Priorities Subsection 4.1

Honoring Delay Constraints Subsection 4,2

Honoring Throughput with
Subsection 4.3

Cooperative Sources

Honoring Througllput with Subsection 4.4
Uncoc_oerativeSources

o m m m _ o o o

• • • • • • • •

Table 3. Resource Reservation Experiments

EXPERIMENT

Honoring Existing Reservations

DEFINITION

Subsection 5.1

Blocking Correlation Subsection 5.2

Honoring Future Commitments Subsection 5.3

°!
o,

0 m "' uJ m 0 0

2.4 RESULTS

This section will contain a summary of the expected results and will note any conditions that

may show a need to repeat the experiments.

6

3 EXPERIMENTS FOR BEST-EFFORT ALGORITHMS

The resource-allocation capabilities of best-effort algorithms are evaluated on the assumption

that all users have equal rights to network resources. The experiments described in this section

determine (1) the overhead, (2) the behavior of the algorithm in a saturated network with

cooperative sources, (3) the behavior of the algorithm in a saturated network with some

uncooperative sources, and (4) the qualitative evaluation of per-packet delay in a low-bandwidth
conversation in a _turated network.

3.1 OVERHEAD DETERMINATION

The objective of this experiment is to evaluate the basic performance of the algorithm by

f'mding the throughput of the network. The throughput is defined as the maximum amount of data

per second that can be sent through a network while the delay remains approximately constant and

no packet loss occurs.

3.1.1 Procedure

The experiment uses fixed-length packets, and increases the offer rate (at one packet per

second) of a single UDP stream, until the network is overloaded. It is suggested that at each offer

rate a minimum of 50,000 packets be sent. The network is considered to be overloaded when

packets are consistently being dropped and the delay is greater than that achieved when there was

no packet loss. Figure 3 shows the end-to-end delay for this experiment, to illustrate the states

during the experiment and the point at which the throughput is established. Note that each interval
marked on the x-axis indicates a new offer rate.

The packet sizes selected depend on the maximum transmission unit (MTU) of the network

under test. It is suggested that the number of bytes in one packet not exceed that of the smallest

MTU traversed by the stream's path. For example, in the case of an MTU of 1500 bytes, it is

DELAY

MAXIMUM I

I I I I I

UNDERLOAD OVERLOAD (PACKET LOSS OCCURS)

Figure 3. Determining Throughput

7

suggested that this experiment be performed with packet sizes of 250, 500, 750, 1250 and 1500

bytes. Note that itthe TG is used, it is important to verify that the offer rate is correct and repeatable

at smaU interarrival times, to ensure that the requested rate is provided and that rate is repeatable.

3.1.2 Measured Parameters

The parameters to be measured in the experiment are

• CPU idle time at gateways

• End-to-end per-packet delay

• End-to-end packet-loss rate

• Offer rate

• Offer load for each new offer rate.

3.1.3 Results

The results of this experiment are dependent on the speed of the networks and the

implementation of the 'algorithm. However, some conditions indicate a need to rerun the

experiment. If the packet-loss rate is significantly greater than expected, due to media error rates,

then the point of underload has not been determined. The initial offer rate should be reduced until

no anticipated loss is found, and the rate should then be incrementally increased from that point. It

is anticipated that large packet sizes will obtain a higher throughput. The overhead of the algorithm

can be determined by comparing the results against a widely used 'algorithm such as FIFO

queueing.

3.2 OVERLOAD BEHAVIOR WITH COOPERATIVE SOURCES

The objective of this experiment is to evaluate the effect of a congestion-avoidance ai gorithm

when the offered load exceeds capacity and the traffic sources are responding to evidence of

congestion.

3.2.1 Procedure

The number of streams used in this experiment depends on the availability of hosts on the test

network, and the ability of the test hosts to saturate the network bandwidth (a minimum of two

streams is required). The experiment consists of all possible combinations of two different traffic

distributions with two different start times (i.e., four separate tests). In one of the two traffic

scenarios, all streams demand equal proportions; in the other scenario, "all streams demand unequal

proportions with at least one stream demanding a high percentage (95%, for example) of the link

capacity. The aggregate bandwidth of all streams should exceed the bandwidth available on at least

one of the paths. For each of these tra.ffic scenarios, two different start times _u-eused: one with all

the streams beginning at the same time or one with the start times of the individual streams being

staggered. When the start times are staggered, the times at which the individual streams start

depend upon the length of the conversations and the number of streams inw_lved. These times

should also be such that the capacity of the network is exceeded during most of the experiment.

The purpose of this kind of overloading is to test the ability of the algorithm to degrade gracefully.

To provide cooperative sources, a protocol that provides flow control should be used,

e.g., TCP.

.,¢,

3.2.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-end delay variance per stream

• End-to-end packet loss per stream

• End-to-end throughput per stream

• Offer load per stream

• Fairness

• Path utilization.

3.2.3 Results

The results should indicate that the algorithm is fair: i.e., when all streams demand the same

proportion but the sum of all streams is greater than the available capacity, each stream should

receive an equal proportion. When one stream demands a high percentage of the bandwidth, the

stream that is demanding less than its share should receive the entire amount, while the

high-bandwidth stream receives whatever is left.* Staggering the start and end times should have

no effect on the fairness of the algorithm.

3.3 OVERLOAD BEHAVIOR WITH UNCOOPERATIVE SOURCES

The objective of this experiment is to evaluate the effect of a congestion-avoidance 'algorithm

when the offered load exceeds the network's capacity, and not all traffic sources are responding to

evidence of congestion.

3.3.1 Procedure

The number of streams used in this pr_xaedure depends on the availability or" hosts on the test

network, and the ability of the test hosts to saturate the network bandwidth (a minimum of two

streams is required). The experiment consists of all possible combinations of two different traffic

distributions with two different start times (i.e., four separate tests). In one of the two traffic

scenarios, all streams demand equal proportions; in the other scenario, all streams demand unequal

proportions with at least one stream demanding a high percentage (95%, for example) of the link

capacity. The aggregate bandwidth of all streams should exceed the bandwidth available on at least

one of the paths. For each of these traffic scenarios, two different start times are used: one with all

the streams beginning at the same time and one with the start times of the individual streams being

staggered. When the start times are staggered, the times at which the individual streams start

depend upon the length of the conversations and the number of streams involved. These times

should also be such that the capacity of the network is exceeded during most of the experiment.

The purpose of this kind of overloading is to test the ability of the algorithm to degrade gracefully.

To provide uncooperative sources, a protocol should be used that does not incorporate flow
control, such as UDP.

*If more than 2 streams are used to lead the network, the bandwidth allocation should follt_w the max-rain mcxlcl

described in Subsection 2.3.

9

3.3.2 Measured Parameters

The parameters to be measured in this experiment are:

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-end delay variance per stream

• End-to-end packet loss per stream

• End-to-end throughput per stream

• Offer load per stream

• Fairness

• Path utilization.

3.3.3 Results

The results should be the same as those obtained with cooperative sources (see

Subsection 3.2.3).

3.4 DELAY IN OVERLOADED NETWORK FOR LOW-BANDWIDTH
CONVERSATION

The objective of this experiment is to evaluate the effect of a congestion-avoidance algorithm

on the delay experienced by a single low-bandwidth conversation when the offered load exceeds

the network's capacity and not all traffic sources are responding to evidence of congestion.

3.4.1 Procedure

The number of streams depends on the availability of hosts on the test network and the ability

of the test hosts to saturate the network bandwidth. A minimum of two streams is required. The

network is loaded with uncooperative sources, such as UDP streams, so that the offer rate of the

competing streams exceeds their fair share, but the total number of streams is not so great as to

cause the low-bandwidth conversation to use its fair share of the network resources. A qualitative

evaluation of delay is provided by a human subject typing input to an echo server (e.g., a remotely
executed UNIX cat command).

3.4.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-enddetay variance perstream

• End-to-end packet loss per stream

• End-to-end throughput per stream

• Offer load per stream

• Fairness

• Path utilization.

Qualitative evaluation of delay for a single Iow-bandw idth conversation should be pertormed.

10

3.4.3 Results

The results of this experiment should show that the delay is constant: the flow of data should

stay the same.

4 EXPERIMENTS FOR TYPE-OF-SERVICE ALGORITHMS

The resource-allocation capabilities of type-of-service algorithms are evaluated with the

assumption that users have different rights to network resources, and that these differences are

expressed in terms of priorities, delay constraints, and throughput limits. Algorithms that

implement more complex types of service, such as combinations of throughput, delay, and priority,

require more experiments to fully evaluate their capabilities and are therefore not included in
CATE.

The experiments described in this section determine the ability of algorithms to honor

(1) priorities, (2) delay constraints, (3) throughput limits with cooperative sources, and (4)

throughput limits with uncooperative sources.

4.1 HONORING PRIORITIES

The objective of this experiment is to evaluate the ability of a congestion-avoidance algorithm
to honor the priorities assigned to a subset of the offered load.

4.1.1 Procedure

The number of streams depends on the availability of hosts on the test network and on the

ability of the test hosts to saturate the network bandwidth. A minimum of three streams is required:
one high priority and two low priority. UDP streams should be used so that flow-control

mechanisms within a transport protocol do not interfere with the outcome of the experiment. The

aggregate throughput of all high-priority streams should not exceed the bandwidth of the paths; the

low-priority streams are used to saturate the capacity of the network. For example, 60% of the

available capacity should be assigned to high-priority streams; another 60% should be used by the

low-priority streams. Since the throughput of the network is exceeded, this experiment also tests

the fairness of the algorithm within the low-priority traffic class.

4.1.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-cnddelay variance per stream

• End-to-end packet loss per stream

• End-to-endthroughput per stream

• Offer load per stream

11

Fairness(within priority level)
Pathutilization,computedseparatelyfor eachpriority level;thecomputationof the
valucfor a givenpriority level is basedonall trat'fic thatis at leastas important as

that priority level.

4.1.3 Results

The high-priority streams should receive all their traffic, with loss occurring only in the

low-priority streams. The throughput of the low-priority streams should not be unfair:, i.e., all

low-priority streams should receive an equal proportion of the bandwidth remaining from the

high-priority streams. The high-priority streams should also have an average delay lower than that

of the low-priority streams for paths of equal length.

4.2 HONORING DELAY CONSTRAINTS

The objective of this experiment is to evaluate the ability of a congestion-avoidance algorithm

to honor the delay constraints assigned to a subset of the offered load.

4.2.1 Procedure

The number of streams used depends on the availability of hosts on the test network and on

the ability of the test hosts to saturate the network bandwidth. A protocol that does not provide flow

control, such as UDP, should be used, so that there is no interaction with the behavior of the

transport protocol. A subset of streams with a delay constraint is chosen to be serviced. If possible,

streams with long and short paths should be included for traffic with delay constraints. The

aggregate offered load of all streams should approach the capacity of the network. For each of the

streams with a delay constraint, the minimum delay is determined by executing the stream in an

unloaded network, i.e., by itseff. The number of streams executing is incrementally increased until

the point at which the increased delay-constrained load results in little orno increase in the amount

of traffic reaching the destinations that meets the delay constraints. At this point, the traffic with

no delay constraints is added. The experiment is repeated tbr each of these delay values per stream:

(I) minimum delay, (2) twice the minimum delay, and (3) tour times the minimum delay. Vail the

streams can be serviced with their delay constraints, the number of streams with delay constraints

is increased until this is no longer true.

4.2.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-enddelay variance per stream

• End-to-end packet loss perstream

• End-to-end throughput perstream

• Offer load per stream

• Fairness (within traffic class)

• Path utilization.

12

4.2.3 Results

The results of this experiment should verify that the algorithm meets the delay constraints

specified. The number of streams supported and the variance in delay indicate how well the

algorithm provides this service.

4.3 HONORING THROUGHPUT LIMITS WITH COOPERATIVE SOURCES

The objective of this experiment is to evaluate the ability of a congestion-avoidance algorithm

to honor the throughput limits assigned to a subset of the offered load, when the offered load

complies with the reservation request.

4.3.1 Procedure

The number of streams used depends on the availability of hosts on the test network and the

ability of the test hosts to saturate the network bandwidth. A protocol that does not provide flow

control, such as UDP, should be used, so that there is no interaction with the behavior of the

transport protocol. A subset of the offer load should have guaranteed throughput. The remaining

streams should cause the aggregate throughput of all streams to exceed the capacity of the network.

The guaranteed traffic should be cooperative: i.e., it should abide by its reservation request.

4.3.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-end delay variance per stream

• End-to-end packet loss per stream

• End-to-end throughput per stream

• Offer load per stream

• Fairness (within traffic class)

• Path utilization.

4.3.3 Results

The results of this experiment should verify that the algorithm meets the throughput

constraints specified for the streams with guaranteed throughput limits. The remaining

nonguaranteed traffic should be fair in its remaining allocation of the reserved capacity.

4.4 HONORING THROUGHPUT LIMITS WITH UNCOOPERATIVE SOURCES

The objective of this experiment is to evaluate the ability of a congestion-avoidance algorithm

to honor the throughput limits assigned to a subset of the offered load, when the offered load

exceeds its reservation request.

13

4.4.1 Procedure

The number of streams depends on the availability of hosts on the test network and the ability

of the test hosts to saturate the network. A protocol that does not provide flow control, such as

UDP, sholld be used, so that there is no interaction with the behavior of the transport protocol. A

subset of the offer load should have guaranteed throughput. The remaining streams should cause

the aggregate throughput of all streams to exceed the capacity of the network. A subset of the

guaranteed traffic should be uncooperative: i.e., it should exceed its reservation request, and the

remaining guaranteed traffic should follow its request.

4.4.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• End-to-end per-packet delay per stream

• End-to-end delay variance per stream

• End-to-end packet loss per stream

• End-to-end throughput

• Offer load

• Fairness (within traffic class)

• Path utilization.

4.4.3 Results

The results of this experiment should verify that the algorithm meets the throughput

constraints specified for the streams with guaranteed throughput limits that follow their reservation

request. The guaranteed streams that exceed their reservation request should not prevent the

nonguaranteed traffic from receiving its fair share, and should at least receive the throughput

specified in their request. The remaining nonguaranteed tiM'tic should be fair in its remaining

allocation of the reserved capacity.

5 EXPERIMENTS FOR RESOURCE RESERVATION ALGORITHMS

The resource-allocation capabilities of resource reservation algorithms are evaluated through

experiments that determine the ability of algorithms to (1) reject reservations that cannot be

honored, (2) avoid blocking correlation, and (3) handle reservations made for a future time. The

experiments in this section handle very simple reservations of throughput; 'algorithms that allow

more complex reservations would require additi(mal experiments to fully evaluate their additional

capabilities. (The ability of an algorithm to enforce a reservation is evaluated by the cxpcriments

described in Section4.)

14

5.1 OVERBOOKING

The objective of this experiment is to evaluate the ability of a reservation-based

congestion-avoidance algorithm to reject reservations that cannot be honored because of a lack of

network resources. These reservation requests are to be immediately serviced.

5.1.1 Procedure

The number of streams used depends on the availability of hosts on the test network and on

the ability of the test hosts to saturate the network bandwidth. Reservations am made between

selected pairs of hosts with random bandwidth requirements and a random duration between 3 and

10 minutes. The traffic streams should be steady in their offered load. The aggregate offered load

should approach the maximum throughput determined by the experiments described in Section 3.
Additional conversations that oversubscribe the network resources should then be added at random

intervals. As conversations end, new conversations should then be accepted.

5.1.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• Throughput per conversation

• Path utilization

• Offer load per conversation

• Conversation-setup delay

• End-to-end per-packet delay

• End-to-end delay variance

• End-to-end packet loss.

5.1.3 Results

Attempted overbooking should result in the rejection of one or more streams. The throughput

of streams currently being serviced should not be affected by new requests. As time progresses,

new reservation requests should be granted in a timely manner as original conversations end. It is

expected that a reservation-based algorithm will be able to make efficient use of network resources

(evidenced by high path utilizations), and also will be able to avoid overcommitting resources

(evidenced by throughputs close to the reserved amounts, and low loss).

5.2 BLOCKING CORRELATION

The objective of this experiment is to determine how conversation-setup delay and

conversation-blocking probability correlate with conversation attributes in a saturated network.

5.2.1 Procedure

The number of streams used depends on the availability of hosts on the test network and on

the ability of the test hosts to saturate the network bandwidth. Reservations are made with random

bandwidth requirements between selected pairs of hosts, with a random duration between 3 and 10

minutes selected uniformly. These reservations are made between hosts that contain long and short

15

pathsto thedestinations.Newreservationrequestsarealsomaderandomlyduring the3- to
10-minuteintervals.Theaggregatethroughputof all therequestsshouldexceedthenetwork
capacity.Thewaffle streams should be steady in their offered load.

5.2.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• Throughput per conversation

• Path utilization

• Offer load per conversation

• Conversation blocking probability

• Conversation-setup delay

• End-to-end per-packet delay

• End-to-end delay variance

• End-to-end packet loss.

5.2.3 Results

It is expected that a reservation-based algorithm will not exhibit extreme correlations; for

example, long-path reservations should not be completely starved by short-path reservations. It is

also expected that continuing to send large numbers of reservation requests will not significantly

affect existing connections.

5.3 HONORING FUTURE COMMITMENTS

The objective is to determine how well a reservation-based algorithm takes future
commitments (such as scheduled teleconferences) into account.

5.3.1 Procedure

The number of streams used depends on the availability of hosts on the test network and on

the ability of the test hosts to saturate the network bandwidth. Reservations are made with random

bandwidth requirements between selected pairs of hosts, with a random duration between 3 and 10

minutes selected uniformly. A subset of traffic forms a future traffic schedule. The conversations

are due to start within the 3- to 10-minute interval and persist for a random duration of 3 to 10

minutes. These future commitments start with a random delay from the start time of the

reservation; this delay of 10 to 60 seconds is selected uniformly. The traffic should be sufficiently

high that the aggregate throughput of all streams exceeds the capacity of the network. All traffic

streams should be steady in their offered load.

5.3.2 Measured Parameters

The parameters to be measured in this experiment are

• CPU idle time at gateways

• Throughput per conversation

• Path utilization

_mt

v

16

w

• Offer load per conversation

• Conversation-setup delay

• End-to-end per-packet delay

• End-to-end delay variance

• End-to-end packet loss.

5.3.3 Results

It is expected that a reservation-based algorithm that does allow for future commitments will

deny reservation requests that conflict with a future commitment. No accepted reservation should

be terminated prematurely or receive less than its reservation because of the activation of a future
commitment.

6 SUMMARY

This manual has outlined a series of experiments that will aid researchers in evaluating the

resource allocation and reservation capabilities of three different kinds of algorithms: best effort,

type of service, and resource reservation. The best-effort experiments determine (1) the overhead,

(2) the behavior of the algorithm in a saturated network with cooperative sources, (3) the behavior

of the algorithm in a saturated network with some uncooperative sources, and (4) the qu',ditative

evaluation of per-packet delay in a low-bandwidth conversation in a saturated network. The

type-of-service experiments determine the ability of algorithms to honor (1) priorities, (2) delay

constraints, (3) throughput limits with cooperative sources, and (4) throughput limits with

uncooperative sources. The resource-reservation experiments determine the ability of algorithms

to (1) reject reservations that cannot be honored, (2) avoid blocking correlation, and (3) handle
reservations made for a future time.

These tests can be used to make meaningful comparisons between "algorithms of the types

described above. Furthermore. no assumptions are made regarding the underlying network, so that

these tests can be pertk_rmed in almost any environment; and the suggested tools for creating the

traffic load make the experiments repeatable. In the past, it was very difficult to obtain reliable

results, because duplicating the scenario was difficult. These experiments, therefore, form a set of

benchmarks t'or evaluating the behavior of various networking algorithms.

17

_d

Appendix C

BASELINE MEASUREMENTS

mmJ

BASELINE MEASUREMENTS

The graphs in Subsections C.1, C.2, and C.3 show the delay and loss for different offer rates.

These graphs were used to determine the maximum throughput of DARTnet. The loss is indicated

as a scatter diagram below the X axis. The source, destination, offer rate and packet byte count are

indicated in the subtitles for each graph. Subsection C.4 contains similar graphs, but these graphs

are examples of blackouts experienced during the execution of various experiments.

Subsection C.4 also contains an example of an experiment in which out-of-order delivery of

packets occurred. The textual output for this example is from the log file produced by the Traffic
Generator.

(3-1

C.1 DARTnet THROUGHPUT

The figures in Subsection C. l show throughput on the DARTnet at a line speed of 1.536 Mb/s.

Service was provided by PSI.

0,30

0.20

-_ 0.10

-_ 0.00

-0.10

--0.20

0.0

THROUGHPUT FOR 250-BYTE PACKETS (1.404 Mb/s)

MM6->Gnt(701,702,703,704,705,706 pps 250 Bytes
Deloy vs Experiment "rlme [exp,91: Mon Dec 9 18:,30:25 1991]

, r , -r ,

7 77

• .- - . 'k"_";, '.' ? .,-"- ÷,! ":_,'(":.k'_,-L_ _'::?. '..'.?_.L":".'_. :

100000.0 200000.0 300000.0

Pockets Sent

MM6- >Molorky(XCountry,

0.6

701,702,703,704,705,706 pps 250 B)

Deloy vs Experiment _me [exp86: Fri Dec 13 13:22:40 1991]

t ' '
"2

0

123

0.4

0,2

0.0

-0.2

0.0

!' _1 I, -:. -..,_.,.'...-4-.,,::_,,;','.:%.:_.72"2_'.-',;:_: -"

100000.0 200000.0 300000.0

Pockets Sent

w-

C-2

THROUGHPUT FOR 435-BYTE PACKETS (1.454 Mb/s)

MM6->ant (4-18,419,420,421,422 pps, 435 Bytes)

Delay vs Experiment []me [exp76." Mort Dec 9 15:42:45 1991]
1.0 J i

0.5

0,0
69

v

-0.5

i

-1.0 , I _ I L

0.0 100000.0 200000,0 300000.0

Packets Sent

MM6->Malerky(XCountry, 418,419,420,421,422 pps 435

Delay vs Experiment lqme [expSO: Mon Dec 9 20:29:05 19£1]
1.0 ' I ' i '

Bytes

13
f-
0

v

(D
123

0.5

0.0

--0.5 J I I I I

0.0 100000.0 200000.0

Packets Sent

300000.0

C-3

0

THROUGHPUT FOR 750-BYTE PACKETS (1.488 Mb/s)

MM6->ant(248,249,250,251,252 pps, 750 Bytes)

Delay vs Experiment]]me [exp73: Sun Dec 8 15:59:55 1991]
1,5 ' r ' I '

1.0

0.5

0.0

:I

-0.5
0.0

--, " r T l--" I r --t r-r " i

I i I

100000.0 200000.0 300000.0

Pockets Sent

MM6->molorky(XCountry, 248,249,250,251,252 pps, 750 Bytes
Delay vs Expedment]3me [exp79: Wed Dec 11 15:06:.30 1991]

1.0 i I

ff I _L, r _Iir II r'_ FrJ '

0.5

C3
0.0

-0.5 , I , I

0.0 100000.0 200000.0 500000.0

Pockets Sent

C-4

"1o
t-

o

tm

1.0

0.5

0.0

THROUGHPUT FOR 1125-BYTE PACKETS (1.503 Mb/s)

MM6->ant(166,167,168,169,170 pps, 1125 Bytes)

Delay vs Experiment Time [exp70: Fri Dec 13 14:46:45 1991]
' I ' I '

-0.5 _ I , I ,
0.0 100000,0 200000.0 300000.0

Packets Sent

MM6->Malorky(XCountry, 166,167,168,169,170 pps 1125
Delay vs E×Derirnent "rime [exp78: Wed Dec 11 17:55:25 1991]

1.0 i i

Bytes

o

0

0.5

0.0

--0.5 , I , 1 ,
0,0 100000.0 200000.0

Packets Sent

500000.0

C-5

c
Q

v

&-

THROUGHPUT FOR 1500-BYTE PACKETS (1.500 Mb/s)

MM6->ant(125,126,127,128,129,150 pps, 1500

Delay vs Experiment lime [exp74: Sun Dec 8 13:35:35 1991]
2.0 ' I ' I '

Bytes)

1.5

1.0

0.5

0.0

-0.5
0.0

j :.L

. ,p_"_.-x-'z" __

I , I ,

100000.0 200000.0

Packets Sent

300000.0

.d

MM6->Malarky(XCountry 124,125,126,127,128,129 pps 1500 B

C3

2.0

1.0

0,0 i

-1.0
0.0

Delay vs Experiment .time [exp77" Man Dec 9 19:26:15 1991]

, I , I

100000.0 200000.0 300000.0

Pockets Sent

wq_

C-6

C.2 DARTnet THROUGHPUT

The figures in Subsection C.2 show DARTnet throughput at a line speed of 1.344 Mb/s.

Service was provided by PSI.

"X7
C

THROUGHPUT FOR 250-BYTE PACKETS (1.230 Mbls)

MM6->cnt(613,614,615,616,617,618 pps 250 Bytes)

Delay vs Experiment Time [explO0-2: Wed &or 22 14:45:15 1992]

0.20

0.00

I 1

i

+

-0.20 ' ' " '

0.0 100000.0 200000.0 300000.0

Packets Sent

Dartnet1->M(]larky(615,614,615,616,617,618 pps 250 Bytes)
Delay vs Experiment]qrne [exp110--3: Mon Jun 8 17:06:10 1992]

0.30 ' I i '

"o

[3
ib

c_

0.20

0.10

0.00

-0.10

-0.20
0,0

, , i ' , I -
I ! I I ' i j' ,

, i

_;, , /" """1

I

100000.0

, :..,., : _.:: [': ;. ,_;., ,::._",;_. ,..:

200000.0 300000.0

Pockets Sent

C-7

THROUGHPUT FOR 435-BYTE PACKETS (1.274 Mb/s)

0,4

0.2

MM6->ant(566.367,368.369,370,371 pps 435 Bytes)

Detoy vs EJ_pett_ent "rime [_p101-2: Wed Ape 22 14:21:55 1992]
0.6

0.0

0.0 100000.0 200000,0 300000.0

Pockets Se_t

Dartnet1->ant(366.367,368.369.370,371 pps 435 Bytes)

Delay "¢s E_iDerlment "l_me [explO|-3: Sun M(:ly 31 19:14:_' 1992]
1.5 t t

1.0

05

0.0

--0.5 I 1 ,

0.0 t 000(30.0 200000.0 ,300000,0

Pockets Sent

MM6- > Malarky(566.567,,.368,369,370,371

1..5

1.0

0,5

0.0

pps 435 Bytes)

Delay ",_ Ewpedment "rime [expl 11 --2: "rhu Al:_r 2,3, 11:3,5:50 1992]

I T

,_p,.,,.--z ' : : " %'----Lit " _-_-± J

--0.5

0.0 100000.0

t

200000.0

Pockets _nl

300000,0

C-8

THROUGHPUT FOR 750-BYTE PACKETS (1.302 Mb/s)

r-_

Dartnet1->ant(217,218,219,220,221,222 pps 750 Bytes)

Delay vs Experiment]qme [expl02-1: Mon Jun 8 19:02:15 1992]
1.5

1.0

0.5

0.0

I I

-0.5 , I _ I ,

0.0 100000.0 200000.0 300000.0

Packets Sent

0

v

_o

MM6->Malorky(217,218,219,220,221,222

2.0

1.0

0.0

pps 750 Bytes)

Delay vs Experiment Time [exp112-2: Thu Apt 23 12:22:55 1992]
I I

-1.0 , I , I ,

0.0 100000.0 200000.0 300000.0

Pockets Sent

C-9

r

v_

0

TH ROUGH PUT FOR 1125-BYTE PACKETS (1.314 Mb/s)

MM6- >ant(1 45,146,1 47,148,149,1 50 pps

2.0

1.5

1.0

0,5

0,0

1125 Bytes)

Delay vs Experiment Time [expl03-1: Wed Apr 22 10:39:05 1992]
I I

°

!

-0.5 , I , I ,

0.0 100000.0 200000.0 300000.0

Pockets Sent

Dartnetl ->Malarky(145,146,1 47,1 48,14-9,150 pps 1125 Bytes)

Delay w3 Experiment Time [exp113-3: Man Jun 8 16'28:20 1992]
2.0 ' I 1

0

v

_3
-6

1,0

0.0

-I .0

0,0

................ =' _ L" ___Z-ff ,_s%_J_ :_.

100000.0 200000.0 300000.0

Pockets Sent

C-10

m

-6

THROUGHPUT FOR 1500-BYTE PACKETS (1.320 Mb/S)

MM6->ant(109,110,111,112,115,114

3.0 , ,

0.0

2.0

1.0

...J ..I

pps 1500 Bytes)

Delay vs Experiment Time [expl04-1: Wed Apr 22 11:20:25 1992]
I I

-1,0 , I , I ,
0.0 100000.0 200000.0 300000.0

Packets Sent

MM6->Malarky(109,110,111,112,113,114 pps 1500 Bytes)

Delay vs Experiment]3me [exp114-2: Thu Apr 2,3 13:59:15 1992]
2.0

1.0

-o
t-
O

D

0,0

--1,0
0.0

, I , I ,

100000.0 200000,0

Pockets Sent

500000.0

0-11

C.3 DARTnet THROUGHPUT

The figures in Subsection C.3 show DARTnet throughput at a line speed of 1.344 Mb/s.

Service was provided by Sprint.

THROUGHPUT 250-BY'rE PACKETS (1.198 Mbls)

MM6->ant(598,599,600,601,602,605,604 pps 250 Bytes)

Delay vs Experiment Time [exp200-3: Sat Oct 31 02:31:30 1992]
I I I

i

.i kill _! :: ; i ::

IT"]" vr'iT"l
-_ i I :..L.-, - i

C21

0.20

0.00

-0,20 :;

0.0 100000,0 400000,0

Packets Sent

t-

v

>,

MM6->Malarky(,598,599,600,601,602,60.3,604 pps 250 Bytes)
Delay vs Experiment Time [exp210-3: Sat Oct 31 0.3:05:30 1992]

I I I

0,20

0,00

-0.20

0.0

t

100000.0 200000.0 300000.0 400000.0

Packets Sent

0-12

c
o

t)

THROUGHPUT FOR 435-BYTE PACKETS (1.256 Mb/s)

MM6->ant(361,362,565,56'1-,365,566 pps 435 Bytes)

Delay vs Experiment]]me [e×p201-2: Sat Oct 31 04:13:00 1992]
0.5 _ ' I '

0.0

-0.5

r" "_"'I I'" _ "1 "'l--r [-'r [-I"]-"l"] I1 I

-1.0 , I , I
O.0 100000.0 200000.0

Packets Sent

500000.0

MM6->Malorky(561,362,563,364,365,566 pps 435

Delay vs E×periment Time [exp211-1: Wed Nov 4 00:53:00 1992]
I ' I

Bytes)

t-
O

v

>,

tm

0,20

0,00

-0,20
0.0 100000.0 200000,0 300000.0

Pockets Sent

C-13

THROUGHPUT FOR 1500-BYTE PACKETS (1.308 Mb/s)

C
O

O

MM6->ant(109,110,111,112,115,114 pps 1500 Bytes)

Delay vs Experiment lime [exp204-1: Sat Oct 24 01:26:00 1992]
2.0 i]

1.0

0.0

-1.0 , 1 , I

0.0 100_0.0 2_0,0

Packets Sent

300000.0

c
0

v

C_

MM6->Malarky(109,110,111,112,115,114 pps 1500

Delay vs Experiment Time [exp214-1: Sat Oct 24 00:26:,30 1992]
3.0 i v

Bytes)

2.0

1.0

0.0

-1.0 , I , I ,
0,0 100000.0 200000,0 300000.0

Packets Sent

0-14

C.4 BAD NETWORK BEHAVIOR

The figures in Subsection C.4 show examples of blackouts and out-of-order delivery during
various tests.

BLACKOUTS DURING TWO-STREAM TESTS

Ant->Dartnetl (Exp. Arrival 0.01 Length 1000 Bytes

Deloy vs Experiment _me [exp27_anLstreom: Fri Sep 6 16:19:15 1991
0.20 i l i '

0

>,
0

tm

0.10

0.00

-0.10

-0.20

0.0 50000.0 100000.0 150000,0 200000,0

Pockets Sent

1.0

SRI->UDEL (Exp. Arrival 0.01 Length 576 Bytes

Delay vs Experiment "Rme [exp27_udel_stre_m: Fri Sep 6 23:18:20 1991"
I I I '

-0
t-
O

In
v

_o

,m

0.5

0.0

-0.5

0.0

L I , I , I ,

50000.0 100000.0 150000.0

Pockets Sent

200000.0

C-15

"0
r

0.20

0.10

BLACKOUTS DURING TWO-STREAM TESTS

Ant->Dartnetl (Exp. Arrival 0.01 Length 1000 Bytes

Delay vs Experiment]3me [exp28_anLstreom: Mon Sep 9 1.3:22:50 1991
' I ' I '

0.00

-0,I0

50000.0 100000.0 150000.0

Packets Sent

q3
i-

v

0

E3

0.20

0.10

0.00

-0.10

-0.20
0.0

SRI->UDEL (Exp. Arrival 0.01 Length 576 Bytes

Delay vs Experiment Time [exp28_udel_streom: Mon Sep 9 20:22:20 199
1 ' I

m.-L_

50000.0 100000.0 150000.0

Packets Sent

C-16

c

©

4.0

3.0

0.0

-1.0
0,0

BLACKOUT WHILE NETWORK WAS UNDERLOADED

MM6 -> Mclarky (XCountry 1948 pps, Bytes 64)

Delay vs Experiment lime [exp83_pps: Wed Dec 11 14:,35:00 1991]
' I 1 ' I ' I '

I _ I L I _ I L

10000.0 20000.0 30000.0 40000.0 50000.0

Pockets Sent

C-17

EXP80

CLIENT

141.374476

141.375096

141.375720

141.376340

141.383860

141.384472

141.385091

141.393953

141.394571

141.395198

141.395816

141.396436

141.403859

141.404472

141.405097

141.405723

141.413861

141.414478

SERVER

141.324255

141.326653

141.329012

141.331411

141.333793

141.336200

141.338557

141.340941

141.343566

141 345733

141 348113

141,350494

141,352888

141,355310

141,357680

141360127

141,362512

OUT-OF-ORDER DELIVERY EXAMPLE (TG Log File)

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

Transmit

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

128.4.0.22.2345

52828403

52829403

52830403

52831403

52832403

52833403

52834403

52835403

52836403

52837403

52838403

52839403

52840403

52841403

52842 403

52843 403

52844 403

52845 403

Receive

Receive

Receive

Reccive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

Receive

140.173.160.3.284852828403

140.173.160.3.284852829403

140.173.160.3.284852830403

140.173.160.3.284852831403

140.173.160.3.284852832403

140.173.160.3.284852833403

140.173.160.3.284852838403

140.173.160.3.284852835403

140.173.160.3.284852836403

140.173.160.3.2848 52837403

140.173.160.3.284852839403

140.173.160.3.284852840403

140.173.160.3.284852841403

140.173.160.3.284852842403

140.173.160.3.284852843403

140.173.160.3.284852844403

140.173.160.3.284852845403

C-18

w

Appendix D

REPORT ON STOCHASTIC FAIRNESS QUEUEING EXPERIMENTS

Technical Report ° March 1993

A REPORT ON STOCHASTIC FAIRNESS
QUEUEING (SFQ) EXPERIMENTS

Barbara A. Denny, Computer Scientist
Information and Telecommu nications Sciences Center

Project 8600
ITAD-8600-TR-93-62

Prepared for:

NASA Ames Research Center
Moffett Field, California 94035

Attn: Dr. Henry Lure, Code RI, M/S: 244-7

and

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, Virginia 22203-1714

Attn: Dr. Paul Mockapetris

Approved by:

Boyd C. Fair, Director
Information and Telecommunications Sciences Center

Michael S. Frankel, Vice President and Director
Information, Telecommunications, and Automation Division

w

W

CONTENTS

LIST OF FIGURES AND TABLES ... iii

1 EXECUTIVE SUMMARY ... 1

2 INTRODUCTION ... 2

3 SFQ CONFIGURATION 2

4 EXPERIMENTS ... 3

4.1 FAIR UTILIZATION ... 5

4.1.1 Objective and Procedure .. 5
4.1.2 Data Description ... 6
4.1.3 Results ... 6

4.2 STARVATION PREVENTION .. 12

4.2.1 Objective and Procedure .. 12
4.2.2 Data Description ... 13
4.2.3 Results ... 13

4.3 GRACEFUL DEGRADATION ... 18

4.3.1 Objective and Procedure .. 18
4.3.2 Data Description ... 19
4.3.3 Results ... 19
RESOURCE USAGE .. 27

4.4.1 Objective and Procedure .. 27
4.4.2 Data Description ... 28
4.4.3 Results ... 28

4.4

CONCLUSIONS .. 33

FIGURES

1 Experiment Topology ... 4
2 Fair Utilization Traffic Row ... 5

3 Starvation Prevention Traffic Flow ... 12

4 Graceful Degradation Traffic Flow .. 18

5 Resource Usage Traffic Flow ... 29

TABLES

1 Fair Utilization Results .. 11

2 Starvation Prevention Results .. 17

3 Graceful Degradation Results From Time 0 to 30 Seconds 25

4 Graceful Degradation Results From Time 30 to 60 Seconds 25

5 Graceful Degradation Results From Time 60 to 90 Seconds 26

6 Graceful Degradation Results From Time 90 to 120 Seconds 26

7 Graceful Degradation Results From Time 120 to 245 Seconds 27

8 Graceful Degradation Results From Time 245 to 275 Seconds 27

9 Graceful Degradation Results From Time 275 to 305 Seconds 28

10 Graceful Degradation Results From Time 305 to 335 Seconds 28

11 Resource Usage Results .. 32

iii

1 EXECUTIVE SUMMARY

SRI International (SRI) has developed an improved queueing algorithm, known as Stochastic

Fairness Queueing (SFQ), for best-effort traffic (i.e., traffic that does not require any guaranteed

service). SFQ is a probablistic variant of strict fair queueing where instead of a single queue being

allocated per flow, a fixed number of queues are used and a hash function maps the IP source and

destination to a particular queue. A seed to the hash function is also perturbed occasionally to help

distribute the flows amongst different queues when more than one flow maps to the same queue

during the lifetime of the flow. SFQ provides "'fair" access by trying to ensure that each flow from

source to destination host obtains equal access to the available bandwidth.

This report covers a series of experiments performed on DARTnet* evaluating the behavior

and performance of SFQ against a FIFO queueing discipline. These experiments were designed to

show SFQ's advantages and performance, and include tests demonstrating

• Fair utilization of available resources

• Starvation prevention

• Graceful degradation under overload conditions

• Resource usage.

The details of each experiment, including objective, procedures, data, and results, are presented in
Section 4.

In general, the experiments do show that SFQ is better than FIFO queueing at allocating

bandwidth equally among a set of flows. SFQ also prevents a stream from dominating the available

bandwidth, which seems to be a tendency with FIFO queueing (i.e., if a flow demands more than

its share of the available bandwidth, with FIFO queueing that stream receives a disproportionate

amount when compared to flows demanding less than their share). Furthermore, SFQ seems to

reward "'nice" users of the network by providing a lower variance in delay and more throughput

when their resource demand is less than their available share. Both SFQ and FIFO queueing seem

to degrade fairly well as the network becomes saturated and to recover well as the network becomes

less congested. Not unexpectedly, FIFO queueing is a little more efficient than SFQ---the delays

are less and the throughput slightly higher because SFQ requires more processing. However, the

performance difference between the two queueing disciplines is relatively small.

However, the experiments do point out some interesting behavior. FIFO queueing can behave

better than SFQ with seed perturbation. We recommend further evaluation of the hash function and

the seed perturbation technique. There are probably weaknesses in their current selection that cause

this unexpected behavior. SFQ also seems to possess good scaling properties. To verify this, more

experiments with a larger number of streams from more hosts need to be executed and examined,

including the staggered introduction of streams. Staggering the streams may prove important,

because graphs in the degradation experiment revealed some unexpected increases and decreases

in throughput, which should be examined. This may again be due to the interaction of the hash

function with the seed perturbation but it may also be related to some other unknown problem.

*DARTnet is a T1 testt_ed network spc)nsored by DARPA.

2 INTRODUCTION

This report summarizes a set of experiments comparing first-in, ftrst-out (FIFO) queueing and

Stochastic Fairness Queueing (SFQ). Historically, FIFO queueing has been the discipline ha

general use in routers. A single queue is used for all packets, which are serviced in a ftrst-come,

first-served manner. However, FIFO queueing often exhibits unfair behavior in the presence of

multiple streams, especially during times of overload. A one-to-one mapping between queues and

streams, with round-robin bitwise service of these queues, would eliminate this problem, but this

algorithm, know as strict fair queueing, is expensive in terms of processing and space requirements.

SFQ is a probabilistic variant of strict fair queueing. Instead of requiring that each flow have its

own queue, SFQ has a fixed number of queues and uses a hashing function to map the IP source

and destination address into one of the queues. Packets are entered into their assigned queues in a

FIFO manner and are removed in a round-robin fashion between 'all nonempty queues (in the

current implementation, the round-robin service is on a packet-by-packet basis). A seed to the hash

function is occasionally perturbed, to allow a redistribution of the address pair mapping. This

mapping redistribution is done to ensure that flows are not consistently mapped into the same

queue, so that a well-behaved source is not penalized by an ill-behaved source if the flows happen

to map to the same queue at some point in time. For a more complete description of SFQ, see the

referenced paper by Paul E. McKenney.*

3 SFQ CONFIGURATION

SFQ has many parameters that can be tuned to improve its performance. These parameters
include

• Individual queue depth

• Total number of queues

• Hash function

• Seed perturbation technique.

The setting of these parameters for these experiments was somewhat arbitrary, because the

experiment design was on a small enough scale that these factors did not ',tffect the outcome

significantly in most cases. More research needs to be done to determine the optimum choice for

larger scenarios. The parameters chosen for this set of experiments are described next.

The choice of the hash function is crucial to good behavior, because the hash function is

responsible for distributing the packets among the queues. If the hash function is poor, many

different flows map into the same queue and the behavior approaches that achieved with FIFO

queueing. The current implementation provides five different hash functions using XOR or rotate

operations. For thc set of addresses used in the experiments, each hash function displayed similar

behavior. We theretore chose an XOR type of hash function.

*McKenney, P.E. 1991. 'Stochastic Fairness Queueing,'" in lntemetworkmg: Research amt Experience. Vol. 2. pp.
113-131.

2

The individual queue depth was set to 100. This parameter value was chosen to match the

queue depth provided by the DARTnet kernel with its FIFO queueing discipline. Queue depth is a
compile time constant and can be changed easily.

The total number of queues used is also an important factor in the behavior of SFQ. As

mentioned earlier, too few queues result in behavior similar to FIFO; too many queues, and the

behavior, and space overhead, resemble strict fair queueing if a suitable hash function is used. To

ensure that the condition arises where more than one flow maps to the same queue during the

lifetime of an experiment (i.e. a collision occurred during the hash computation), the number of

queues was limited to 9. This number is controlled by a compile-time constant and is easy to

change; however, in our implementation, the number of queues has to be equal to 2m+ 1, where m

is an integer. We are using a software implementation of the modulo operator, which works only

for these values, because the current SPARC* architecture lacks the hardware support necessary

for an efficient implementation. The modulo operator is used to reduce the result of the hashing
function to the desired range.

As previously mentioned, collisions into the same queue will occur for the host addresses used

in the experiments below. Thus, the experiments will show the results with and without seed

perturbation. To preserve packet ordering, the current implementation increments the seed when

all the queues are empty. In a congested router, it is anticipated that this will be infrequent;

therefore, different techniques for seed perturbation need to be developed and tested.

4 EXPERIMENTS

The experiments were executed on DARTnet, a DARPA research testbed network. DARTnet

is a cross-country T1 networkt that connects research sites via T1 tail circuits. The routers and

most of the hosts are SPARC 1+, with the exception of two hosts, MM6 and Malarky, which are

SPARC 2s. Figure 1 illustrates the portion of the network used in these experiments.

The objectives of the experiments were to show the benefits and performance of SFQ. These
experiments therefore demonstrate

• Fair utilization of available resources

• Starvation prevention

• Graceful degradation under overload conditions

• Resource usage.

Each experiment was run at least twice to verify its repeatability; however, in this report we

will include only a single case. Each run of an experiment consisted of executing the experiment

with a special kernel on the touters that support SFQ, with and without seed perturbation in most

cases, and with the standard DARTnet kernel, which provided the FIFO queueing mechanism. The

version number of the DARTnet kernel was 6. All traffic streams originated tYom machines using

*All product names mentioned in this report are the trademarks of their respective holders.

i-Due to hardware constraints, the network _perates at 1.344 Mb/s instead of 1.536 Mb/s.

MM6

(IPX) DARTnetl

ETHERNET

DART3 DART5

ETHERNET

ETHERNET

Lawn dart

° TT1

 ,,oPI

TI T1

T1

T1

IDCi=oq

ETHERNET

Ant

T1
Malarky

(IPX)

Figure 1. Experiment Topology

version 6 of the DARTnet kernel. Each stream in the experiment ran for 245 seconds, but the total

time of the experiment was 335 seconds, due to the staggering of the start times for each stream.

All experiments were designed to overload the link so that the network's behavior in times of

congestion could be observed.

The DARTnet traffic generator (TG) was used to create the traffic streams. TG is an SRI-

developed tool for creating high-quality and repeatable experiments on packet-switched networks.

It executes as a source and sink program that enables experimenters to generate one-way tralfic

streams and gather statistical data about the transmission and reception of each stream. The TG is

driven by a control language (script) that specifies different operating modes, protocols, addressing

functions, traffic parameters, and execution times. At present, packet lengths and packet offer rates

can be specified according to the following distributions: constant, uniform, exponential, and 2-

state Markov. The delay and throughput for each of the experiments, therefore, is measured from

user process to user process.

4

4.1 FAIR UTILIZATION

4.1.1 Objective and Procedure

This experiment was designed to show that streams receive equal portions of the available

bandwidth. In this experiment, four equal UDP streams are created; these streams occupy 60

percent of the link capacity of a T1 line. The traffic distribution for each stream is identical: each

stream's offer rate is exponentially distributed with a interarrival mean of 0.007692 seconds (-130

packets per second) and a constant size of 782 bytes (including UDP and IP headers). The source,

destination, and direction for each stream is as follows (see Figure 2):

• Dartnet I to Malarky

• Lawndart to Dart5

• LBL router to Dart3

• MM6toAnt.

At the start of the experiment, the stream from DARTnetl to Malarky and the stream from MM6
to Ant collide with the initial seed value.

MM6

(IPX) DA RTn et 1 DA RT3 DA RT5

Malarky

OPX)

Lawnda_ Ant

Figure 2. Fair Utilization Traffic Flow

5

4.1.2 Data Description

The graphs below show the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiments were executed with and without seed perturbation: SFQ Experiment 29

ran without seed perturbation, and SFQ Experiment 69 ran with seed perturbation.

Table 1 summarizes the results of the experiments, including the average offer rate, average

throughput, average delay, and delay variance for each stream.

4.1.3 Results

The results of this experiment show that SFQ does provide better equal access to the available

resources, while FIFO queueing allows the LBL to Dart3 to dominate the resource. Furthermore,

seed perturbation does seems to improve SFQ performance when collisions occur. It is important

to note that the throughput bottleneck occurs on the link from AMES to LA and on the link from

LA POP to the DC POP. At each of these points in the network, three streams are trying to share

the same link. Under perfect utilization, each stream would receive 32.3% of link capacity.* In

experiment 49 with SFQ, the utilization for each stream was 31.8%, 31.6%, 31.7%, and 31.8%.

*In previous b_tseline measuremems of the DARTnet FIFO kernel, the throughput for a packet size of 750 bytes was

96.9% of the link capacity.

6

SFQ EXPERIMENT 29

SFQ DartneLl-->Matarky(150 pps, 782 Bytes.)

OfferRate,Thruput [sfq29_dartnetl_malarl<y_stream: Fri Jut 1-7 20:40:50 1992]0.70 ,
I I I

0.60 --! .t..--'P'-'_- "-._../_-..

i
F

L
_. 0.50

r_

E 0.40
0

0...t0

L.
J
I

100.0 200.0

Time (seconds) i _ Offer Rate

500.0

FIFO Throughput

--- SFQ ThroughDut

0.70

0,60

g
..121

._ 0.50

r-

Q_

0.40

0.50

0.20

0.0

SFQ LBL->DortS(150 pps, 782 Bytes)

OfferRate,Thruput [stq29..Jbt_dartS_stream: Sot Jul 18 05:40:50 1992]
' I I

"'-¢

A

, I ,

I 00.0

T;me (seconds)

I i

200.0 500.0

i * Offer Rate

-' FIFO Throughput

_P---------a SFQ Throughput

7

0.70

0,60

0.50

i 0.40

OJ30

0.20
0.0

0,70

0.60

8.
c,,

._. 0.50

"_ O.4-0
cb

2

0.30

0.20

0.0

SFQ EXPERIMENT 29

SFQ Lawndart-->DartS(150 pps, 782 Bytes)
OfferRate,Thruput [sfq29_lawndarLdart5_stream: Sat Jul 18 05:4-0:30 1992"

I I

i

100.0 200.0 .500.0

Time (seconds) ' i Offer Rate
_ RFO Throughput

= _ SFQ Throughput

SFQ MU6->Ant(1.30 pps, 782 Bytes)

OfferRate,Thruput [sfq29_mm6_anLstream: Sat Jul 18 03:40:50 1992]
' I , 1 ,

'X

I
100.0 200.0 300.0

_me (seconds) t t Offer Rate
-_ -* RFO ThroughDut

u a SFQ Fhroughput

8

SFQ EXPERIMENT 49

SFQ Dartnetl->Malarky(150 pps, 782 Bytes)

OfferRate, Thruput [sfq49_dartnet1_.malarky_stream: Fri Jul 17 22:41:50 1992]
0.70) l

&

,¢p

"6
c
(D

¢,
Q,=

0.60

0.50

0.40

0.30

0.20 J I A I ,

0.0 100.0 200.0 300.0

"Rme (seconds) _ , Offer Rate
FIFO Throughput

c = SFQ Throughput

0.70

0.60

t_
r_

0.50
-4-

0,40

0.30

0.20
0.0

SFQ LBL->DQrtS(150 pps. 782 Bytes)

OfferRate,ThnJput [sfq49Jbl_dartS_stream: Sat Jul 18 05:41:.50 1992]
,] ,]

/*\

\
\,

I _ I

100.0 200.0

I

_me (seconds) a

0

300.0

) Offer Rate

_" F-]FO Throughput

o SP3 Througt_put

9

SFQ EXPERIMENT 49

0.70

SFQ Lawndart-->DartS(lSO pps, 782 Bytes:)

OfferRate,Thruput [sfq49_la_ndart._dartS_stre_m: Sat Jut 18 05:41:30]
I I

0.60

69
Q.
r_

0.50

0

"E 0.40

0.50

0,20
0.0

0.70

., /. t

100.0 200.0

Time (seconds)

i

300.0

I t Offer Rote

-_ J- FIFO Throughput
o a SFQ Throughput

SFQ MM6-->Ant(,150 pps, 782 Bytes)

OfferRate,Thruput [sfq49_mm6_anLstream: Sat Jul 18 05:41 :.30 1992]
I I

0.60

i/j
r',,
t-',

._. 0.50

"E 0.4O

0.30

0.20
0.0

_ ._. _ -_, ._ _ _, _, __- --

I , l , I ,

100.0 200.0

Tir-ne (seconds) t i Offer Rate
.&

300.0

-' FIFO Throughput
m SFQ Throughput

10

STREAM

Dartnetl to Matarky

Table 1. Fair Utilization Results

EXPERIMENT
NUMBER

fifo29

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

60.26

AVERAGE
THROUGHPUT

(percentage of
1.344Mb/s)

26.64

AVERAGE
DELAY

(seconds)

1.4704

DELAY
VARIANCE

0.0057

sfq29 60.25 22.85 1.5186 0.0074

sfq49 60.25 31.84 2.8637 0.1215

LBL tO Dart3 fifo29 60.25 47.49 0.5367 0.0007

sfq2.9 60.26 36.00 1.3415 0.0095

sfq49 60.26 31.62 1.5221 0.0095

Lawndart to Dart5 fifo29 60.25 23.08 1.0198 0.0029

sfq29 60.25 36.15 2.2988 0.0384

sfq49 60.25 31.72 1.9565 0.0849

MM6 to Ant fifo29 60.26 34.73 0.9608 0.0024

sfq29 60.25 24.71 1.4666 0.0071

sfq49 60.25 31.84 2.4286 0.0398

11

4.2 STARVATION PREVENTION

4.2.1 Objective and Procedure

This experiment was designed to show SFQ's ability to prevent starvation. In the experiment,

three unequal UDP streams are created. The source, destination, and direction of each stream are

as follows (see Figure 3):

• Lawndart to Ant

• MM6toDart5

• Darmetl to Malarky.

The stream from Lawndart to Ant occupies 95% of the link capacity of a T1 line. This stream is

exponentially distributed, with an interamval mean of 0. 004902 seconds (-204 packets per

second) and a constant packet size of 782 bytes (including UDP and IP headers). The streams from

MM6 to Dart5 and Darmetl to Malarky each occupy 20% of the link capacity of a T1 line. Each

stream is exponentially distributed, with an interarrival mean of 0.023256 seconds (-43 packets per

second) and a constant packet size of 782 bytes. At the start of the experiment, the streams from

Lawndart to Ant and from MM6 to Dart5 collide with the initial seed value.

MM6

(iPX) DARTnetl DART3 DART5

Lawndart Ant

Malarky
(IPX)

Figure 3. Starvation Prevention Traffic Flow

12

4.2.2 Data Description

Each graph below shows the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiments were executed with and without seed perturbation: SFQ Experiment 28

ran without seed perturbation and SFQ Experiment 47 ran with seed perturbation.

Table 2 summarizes the results of the experiments, including average offer rate, average

throughput, average delay, and delay variance for each stream.

4.2.3 Results

This experiment does show that SFQ helps prevent starvation by ensuring that those streams

that demand less than their fair share of the available bandwidth receive their entire quota; while

with FIFO queueing, they receive a disproportionate amount. In particular, with FIFO queueing,

the stream that demanded -95% of capacity received 74%, approximately 78% of its request.

However, the two streams that wanted only 20% of the bandwidth received ~ 11%, or only 58% of

their requested utilization. The variance in delay for the smaller streams was also less with SFQ

than with FIFO: SFQ thus rewards "nice" users of the network.

13

1 .00

0.90

&
r%

-s:
__ 0.80

'_ 0.70

,-a

0.60

0.50
0.0

0.25

0.20

be
m

J_

0.15

,1)
t.)

EL_

0.10

0.05
0.0

SFQ EXPERIMENT 28

SFQ Lawndart-->Ant(204- pps, 782 Bytes)

OfferRate,Thruput [sfq28JawndarL_anLstrearn: Sat Jul 18 02:39:00 1992-

, I

100.0 200.0 500.0

Time (seconds) P , Offer Rate
: -- F'IF,3 Throughput
a u SFQ Throughput

SFQ MM6->Dart5(43 pps, 782 Bytes)
OfferRate.'l'hruput [sfq28_.mm6_dart5_stream: Sat Jul 18 02:,39:00 1'992]

' I ' 1 '

I

, I , 1

1o0.o 2oo.o

Time (seconds) '
..%

t3

h

500.0

Offer Rate

FIFO Throughput

a SFQ Throughput

14

J

0.20

-- 0.15

4J,

0.10

0.05
OX

SFQ EXPERIMENT 28

SFQ Dartnetl->Molcrky(4-5 pps, 782 Bytes)

O.2_OfferRate,Thruput_, [sfq28_dartnet1_malarky_stre_urn: Fri Jul 17 19:59:00 1,992]
I]

100.0 200.0

I

.300.0

Time (seconds) i _ Offer Rote
-" FIFO Throughput

c = SFQ Throughput

I .00

0.90

&

._. 0.80

0,70

0

0.60

0.50
0.0

SFQ EXPERIMENT 47

SFQ Lawndart-->Ant(204 pps, 782 Bytes)

OfferRate,Thruput [sfq4-7_Jawndort_anL_stream: Sat Jul 18 06:10:30 1992]
I ' I

.q,

100.0 2OO.O

Time (seconds)
J.

m

500.0

t Offer Rate

.L F"qFOThroughput
SFQ ThroucjhDut

15

SFQ EXPERIMENT 47

r_

,q.

r-

Q.

0.25

0,20

0.15

0.10

0.05

SFQ MM6-->Dart5(¢5 pps, 782 Bytes)

OfferRote,Thruput [sfq47_mm6_clortS_strearn: Sat Jul 18 06:10:..30 1992"
1 ' I

0.0

I I I i

100.0 200.0 300.0

Time (seconds) t t Offer Rate
-_FIFO Throughput

= = SFQ Throughput

SFQ Dartnetl->Malarky(@3 pps, 782 Bytes)

OfferRate,Thruput [sfq47_dartnet1_malarky_stream: Fri Jul 17 23:10:50 1992]
0.25 I]

m

&
t_

_6
"d
¢)

0.20

0.15

0.10

0.05
0.0

_'_r_z_%_rA'_'_-_

1 , I

100.0 200.0

Time (seconds)

0

i

.300.0

t Offer Rote

,_ FIFO Throughput

,_ SFQ Throughput

16

u

IIW

Table 2. Starvation Prevention Results

STREAM

Lawndart to Ant

MM6 to Dart5

EXPERIMENT
NUMBER

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

fifo27 94.72

sfq28 94.72

sfq47 94.72

fifo27 20.01

AVERAGE
THROUGHPUT
(percentage of

1.344 Mb/s)

74.12

AVERAGE
DELAY

(seconds)

0.5727

55.05 1.0888

55.07 1.0897 0.0271

11.68 0.5383 0.0007

DELAY
VARIANCE

0.0057

0.0272

sfq28 20.01 20.01 0.0853 0.0004

sfq47 20.01 20.01 0.0770 0.0003

Dartnetl to Malarky fifo27 20.01 11.44 0.5377 0.0008

sfq28 20.01 20.01 0.0796 0.0003

sfq47 20.01 20.01 0.0796 0.0004

17

4.3 GRACEFUL DEGRADATION

4.3.1 Objective and Procedure

This experiment was designed to show that SFQ degrades gracefully in periods of overload;
each stream receives its fair share of the available bandwidth as more streams are added. In the

experiment, four equal UDP streams were created; the streams occupy 60 percent of the link

capacity of a T1 line. The traffic distribution for each stream is identical: each stream's offer rate

is exponentially distributed, with a interarrival mean of 0.007692 seconds (~ 130 packets per

second) and a constant size of 782 bytes (including UDP and IP headers). A stream is added every

30 seconds "after the previous one. The source, destination, and direction of each stream, in the

order in which the streams were created, is as follows (see Figure 4):

• Darmetl to Malarky

• LBL router to Dalx3

• Lawndart to Dart5

• MM6to Ant.

At the start of the experiment, the stream from DARTnetl to Malarky and the stream from MM6

to Ant collide with the initial seed value.

Lawndart

MM6

(IPX) DARTnetl DART3 DART5

Ant

Malarky
(IPX)

Figure 4. Graceful Degradation Traffic Flow

18

f

4.3.2 Data Description

The graphs below show the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiments were executed with and without seed perturbation: SFQ Experiment 31

ran without seed perturbation and SFQ 41 ran with seed perturbation.

Tables 3 through 10 summarize the progression of the experiment, by including the average

offer rate, average throughput, average delay, and delay variance for each significant time period
for every stream. The time periods displayed are related to the times when streams are added and

deleted, including a time period when "all streams are executing simultaneously. To summarize,

• Table 3 shows the first 30 seconds, when only the Darmetl to Malarky stream exists.

• Table 4 shows the second 30-second interval, when the stream from LBL to Dart3

has been added.

• Table 5 shows the third 30-second interval, when the stream from Lawndart to Dart5
has been added.

• Table 6 shows the fourth 30-second interval, when the stream from MM6 to Ant has
been added.

• Table 7 shows the next 125 seconds, when all the streams are running.

• Table 8 shows the next 30 seconds, when the stream from DARTnet to Malarky has

dropped out and only the streams from LBL to Dart3, Lawndart to Dart5, and MM6

to Ant are running.

• Table 9 shows the next 30 seconds, when only the streams Lawndart to Dart 5 and

from MM6 to Ant are present.

• Table 10 shows the final 30 seconds, when the stream from MM6 to Ant is the only
one left.

As in the fair utilization experiment, the throughput bottleneck occurs on the links from

AMES to LA and from LA POP to DC POP. The bottleneck on the AMES to LA link a.ffects the

streams from Dartnetl to Malarky, Lawndart to Dart5, and MM6 to Ant; while the bottleneck on

the link from LA POP to DC POP affects the streams from Dartnet I to Malarky, LBL to Dart3, and

Lawndart to Dart5. At each of these locations, the streams are trying to share the same link.

4.3.3 Results

The results of this experiment should be the tbllowing:

1. As the first three streams are added, the amount of throughput on each stream should

decrease proportionately to the number of streams running, since they all use the LA
POP to DC POP link.

2. As the fourth stream (MM6 to Ant) is added, there should be little effect on the first

three streams, since the bottleneck has not substantially changed.

3. As Dartnetl to Malarky drops out, the throughput on all the remaining streams

should reach approximate ly 50%.

4. As LBL to Dart3 drops out, there should be no real effect on the two remaining

streams, because the AMES-LA bottleneck now comes into play.

5. As the Lawndart to Dart5 stream drops out, throughput on the stream from MM6 to
Ant should match the offer rate.

19

In general,bothSFQandFIFO exhibited the behavior described above. However, SFQ seems

to be "'more" fair overall than FIFO queueing. The range of throughputs achieved under SFQ more

closely matched the ideal; under FIFO queueing there may be a tendency for a stream to

"'dominate" the available resources under heavy utilization (see Table 7). Not unexpectedly,

"strict" fair queueing (SFQ with no collisions) behaved better than SFQ with seed perturbation (see

Table 5). However, in one instance, FIFO queueing behaved better than SFQ with seed

perturbation (see Table 5). This underlines the need to find optimal hashing functions and good

seed perturbation techniques.

_tr

"-,e"

2O

m

0.60

V_

k o.5o

vo
,.-- 0.40

C

0.30
(5_

SFQ EXPERIMENT 31

SFQ Dartnet1->Malarky(130 pps, 782 Bytes)

OfferRate,Thruput [sfq5 l_dartnetl _r'nalarky_streom: Fri Jul 17 21:15:00 1992]
' I ' I I '

0.20

0.10

0.0

0.60

.# 0.50

-- 0.40

t'--

0.30

G_

(].20

0.10
0.0

100.0 200.0 300.0 4-00.0

i p Offer Rate
T]me (seconds) _. _ FIFO Throughput

a [] SFO Throughput

SFQ LBL-->Dcrt3(130 pps. 782 Bytes_)

OfferRate,Thruput [sfq,51_lbl_dart3_stre_m: Sat Jul 18 04:1.5:00 1992]
I ' I

?v

i i 1

100.O 200.0

]qme (seconds)

I I

300.0 400.0

Offer Rote

-' FIFO ThroughDut
u SFO Throughput

21

0.70

0.60

69

0.5o

-- 0.40

"E

0.30
Q.

0,20

0.10

0.0

0.60

b o.50

r_

-- 0,_0

@
m

0.20

0.10
0.0

SFQ EXPERIMENT 31

SFQ Lawndart->DartS(15Q pps, 782 Bytes)

OfferRote,Thruput [sfqS1Jawndart_dartS_strearn: Sat Jut 1 8 04:13:00]
1 I I

100.0 200.0

Time (Seconds)

, 1 i J

300.0 400.0

q _ Offer Rote

,_ .L FIFO Throughput

SFO Throughput

SFQ MM6->Art(150 pps, 782 Bytes)

OfferRate,Thruput [sfq31_Pnm6_ont_stream: Sat Jul 18 04:13:00 !992]
I I I

/

I , 1

100.O 200.0

Time (seconds)

i

300.0 400.O

, Offer Rate

•, _ FIFO "ThroughDut
SFQ Through!3ut

22

SFQ EXPERIMENT 41

SFQ Dartnetl-->Malarky(130 pps, 782 Bytes)

OfferRate,Thruput [sfq41_dartnet1_malarky_stream: Frf Jut 17 22:03:30 1992]

0.60

0.50

t,3

-- 0.40

"5
"E
E 0.30

r_

0.20

0.10
0.0

0.60

' I ' I

I , I J

100.0 200.0

T_me (seconds)

SF-Q LBL->DartS(130 pps,

I i

300.0 400.0

, i Offer Rote

-_ _ FIFO Throughput
= = SFO Throughput

782 Bytes)

OfferRate,Thruput [sfq41_lbLdart3_stream: Sat Jul 18 05:0,3:50 1992]

& 0.50
r_

-- 0.40

_ 0..50

0.20

0.10 '
0.0

' 1 ' I _

I

100.0 200.0

]_me ('seconds)
I

300.0 400.0

Offer Rate

FIFO Throughput
a SFQ Throughput

23

0.70

0.60

_- 0.50
r_

-- 0.4-0

"E
U 0.50

0.20

0.10

0.0

0,60

__ 0.50

0.40

@

_ 0..30
0

c_

0.20

SFQ EXPERIMENT 41

SFQ Lawndart->Dart5(-150 pps, 782 Bytes)

OfferRate,T'hruput [sfq41_lawndart_dartS_streom: Sat Jul 18 05:05:.30 1992]
I I I

o. 1o
0.0

, I ; I

100.0 200.0

Time (seconds)

SFQ MlV16->Ant(150 pps,

J i

300.0 400.0

I i Offer Rate

= -- F'IFO Throughput

= = SFO Throuahout

782 Bytes)

OfferRate,Thruput [sfq41_mm6_ant_streom: Sat Jul 18 05:05:50 1992

I [I

, I _ I

t 00.0 200.0

]qme (seconds)
I

0

I

I

300.0 400.0

, Offer Rate

F]FC, Throughput

o SFQ Throughput

,j

24

m

Table 3. Graceful Degradation Results From Time 0 to 30 Seconds*

EXPERIMENT
NUMBER

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

AVERAGE
DELAY

(seconds)STREAM

Dartnetl to Malarky fifo31 61.61 61.61 0.0605 0.000044

sfq31 61.47 61.47 0.0583 0.000049

sfq41 61.63 61.63 0.0588 0.000051

*Time is approximate.

DELAY
VARIANCE

Table 4. Graceful Degradation Results From Time 30 to 60 Seconds*

STREAM

Dartnetl to Malarky

EXPERIMENT

NUMBER

fi f031

AVERAGE
OFFER RATE

(._rcenlage of
1.344 Mb/s)

60.39

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

AVERAGE
DELAY

(seconds)

DELAY
VARIANCE

48.35 0.5212 0.00503

sfq31 60.43 48.53 0.9591 0.04639

sfq41 60.39 48.47 0.9537 O.04045

I_BL to Dart3 fifoG1 61.45 49.79 0.5179 0.00557

sfc131 61.45 48.58 0.9650 0.04815

sfq41 61.46 48.56 O. 9605 O.0429

*Time is approximate.

25

Table 5. Graceful Degradation Results From Time 60 to 90 Seconds*

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (peroenlagoof DELAY DELAY
STREAM NUMBER 1.344 Mb/s) 1.344 Mb/s) (seconds) VARIANCE

Dartnetl to Malarky fifo31 59.38 33.34 0.99504 0.00743

sfq31 59.38 32.43 2.4168 0.05466

sfq41 59.39 48.52 1.8293 0.05488

LBL to Dart3 fifo31 60.45 30.24 0.5426 0.00004

sfq31 60.45 31.44 1.5327 0.00016

sfq41 60.45 25.85 1.0463 0.00005

Lawndart to Dart5 fifo31 61.47 34.43 0.9950 0.00896

sfq31 61.47 33.98 2.3087 0.26848

sfq41 61.47 22.31 1.9382 0.05580

*Time is approximate.

Table 6. Graceful Degradation Results From Time 90 to 120 Seconds*

STREAM

Dartnetl to Malarky

EXPERIMENT
NUMBER

fifo31

sfq31

sfq41

AVERAGE
OFFER RATE
(percentage o!

1.344 Mb/s)

59.97

59.95

59.95

AVERAGE
THROUGHPUT
(percentage of

1.344 Mb/s)

27.42

23.69

31.90

AVERAGE
DELAY

(seconds)

1.4656

1.6404

1.9922

DELAY
VARIANCE

0.00532

0.06492

0.00157

LBLto Da_3 fifo31 59.38 47.29 0.5370 0.00012

sfq31 59.38 34.47 1.3963 0.00701

_q41 59.38 36.03 0.8097 0.00358

Lawnda_to Oa_5 fifo31 60.43 22.02 1.0237 0.00010

sfq31 60.43 34.62 2.2364 0.00730

sfq41 60.43 25.71 2.2667 0.00098

MM6to Ant fifo31 61.47 34.96 0.9547 0.00582

_Q31 61.46 24.07 1.4622 0.00585

61.46 33.50sfq41 1.8455 0.13713

*Time is approximate.

26

Table 7. Graceful Degradation Results From Time 120 to 245 Seconds*

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (percentage of DELAY DELAY
BTREAM NUMBER 1.344 Mb/s) 1.344 Mb/s) (seoonds) VARIANCE

Dartnetl to Malarky fifo31 60.25 26.94 1.4840 0.00021

sfq31 60.20 23.42 1.5336 0.00026

sfq41 60.21 31.54 2.0037 0.00025

LBL to Dart3 fifo31 60.19 47.28 0.5370 0.00013

sfq31 60.20 35.46 1.3625 0.00223

sfq41 60.19 37.23 0.7953 0.00008

Lawndart to Dart5 fifo31 59.66 22.62 1.0238 0.00012

sfq31 59.62 35.48 2.3359 0.00245

sfq41 59.66 22.62 1.0238 0.00012

MM6 to Ant fifo31 60.04 33.93 0.9735 0.00012

sfq31 60.03 23.91 1.4822 0.00010

sfq41 60.01 31.53 1.9654 0.00024

*Time is approximate.

Table 8. Graceful Degradation Results From Time 245 to 275 Seconds*

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (percentage of DELAY DELAY
BTREAM NUMBER 1.344 Mb/s) 1.344 Mb/s) (seconds) VARIANCE

LBL to Dart3 fifo31 60.01 53.26 0.5177 0.00109

sfq31 60.02 46.52 1.0397 0.00238

sfq41 60.01 51.16 0.5553 0.00207

Lawndart to Dart5 fifo31 61.29 42.86 0.9837 0.00778

sfq31 61.83 46.63 2.0102 0.00273

sfQ41 61.79 41.23 1.5244 0.01237

MM6 to Ant fifo31 58.70 48.47 0.5099 0.00276

sfq31 58.85 46.30 1.0008 0.00304

sfq41 58.85 45.49 1.0091 0.01186

*TLrne is approximate.

27

Table 9. Graceful Degradation Results From Time 275 to 305 Seconds*

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (peccentage of DELAY DELAY
STREAM NUMBER 1.344 Mb/s) 1.344 Mb/s) (seconds) VARIANCE

Lawndart to Dart5 fifo31 60.01 43.82 0.5380 0.00029

MM6 to Ant

*Time is approximate.

sfq31 60.01 47.23 1.0401 0.002752

sfq41 60.01 47.30 1.0317 0.000472

fifo31 61.79 48.68

sfq31 61.78 47.17

sfq41 61.77 47.22

0.5028 0.00016

0.9937 0.00070

0.9941 0.00075

Table 10. Graceful Degradation Results From Time 305 to 335 Seconds*

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (percentage of DELAY DELAY
STREAM NUMBER 1.344Mb/s) 1.344Mb/s) (seconds) VARIANCE

MM6 tO Ant fifo31 60.01 60.01 0.0313 0.001457

sfq31 60.01 59.78 0.0551 0.01628

sfq41 60.01 59.81 0.0567 0.01707

w

*Time is approximate.

28

- 4.4 RESOURCE USAGE

4.4.1 Objective and Procedure

SFQ Experiment 24 experiment is similar in design to the experiment on starvation prevention

(see Subsection 4.2). However, instead of three UDP streams flowing in the same direction, this

experiment used two UDP streams flowing in one direction, and another stream in the reverse

direction. This was to done to test SFQ's performance in relation to FIFO queueing. It also

provided a stress test of the network, since previous experiments with cross streams failed

(blackouts occurred).The source, destination, and direction of each stream are as follows (see

Figure 5):

• Lawndart to Ant

• MM6toDart5

• Malarky to Dartnetl.

The streams from Lawndart to Ant and Malarky to Dartnetl occupy 95% of the link capacity of a

T1 line. Each of these streams is exponentially distributed, with an interarrival mean of 0.004902

seconds (-204 packets per second) and a constant packet size of 782 bytes (including UDP and IP

MM6

(IPX) DARTnetl DART3 DART5

Malarky
(iPX)

Lawndart Ant

Figure 5. Resource Usage Traffic Flow

29

headers). The stream from MM6 to Dart5 occupies 20% of the link capacity of a T1 line. This

stream is exponentially distributed, with an interarrival mean of 0.023256 seconds (~43 packets per

second) and a constant packet size of 782 bytes.

4.4.2 Data Description

Each graph below shows the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiment was executed without seed perturbation, which was not of interest.

Table 11 summarizes the results of the experiments, including average offer rate, average

throughput, average delay, and delay variance for each stream.

4.4.3 Results

This experiment does show that SFQ does not significantly 'affect the throughput of the

network, compared with FIFO queueing. At -95% offer load, the average throughput for FIFO

queueing was 94.68%, while for SFQ it was 94.46%. As in all experiments, the average delay and

variance in delay is greater with SFQ than with FIFO, because SFQ requires more processing.

However, when a stream is competing for scarce resources, the variance seems to be lower with

SFQ for streams that are demanding less than their share.

3O

W

1.00

SFQ EXPERIMENT 24

SFQ Lawndart-->Ant(204 pps, 782 Bytes.')

OfferRate.Thruput [sfq24_lawndort._anLstream: Sun Jul 1 2 0.3:01:30 1992"
I I '

G')

c_ 0.90

"5

C

0.80

r-,

r
0.70

0.0

0.25

\ \

, I , I

100.0 200.0

]qme (seconds) _ i Offer Rate

C

300.0

FIFO Throughput
o SFQ Throughput

0.20

_5

rb

0.15

0.10
0.{

SFQ MM6-->DartS(4-5 pps, 782 Bytes}

OfferRate,Thruput [sfq24_rnm6_dart5_stream: Sun Jul 12 03:01:50 lg92
I I

_ / /m\ ,*,/,,j
,, f

-,,,--.x ''A\.w

100.0 200.0 .500.0

]qme (seconds) _ i Offer Rate
----- FIFO ThroughD,_lt

= = SFQ Throughput

31

¢.,,

"5
C

d_

SFQ EXPERIMENT 24

SFO Malarky->Oartnet1(204 pps, 782 Bytes)

OfferRate,ThnJput [sfq24_malarky_dartnet1_stre_3m: Sun Jul 12 0.3:01:30 1992]
1.00 I I

0.98

0.96

0.94

0.g2

0.90
0.0

I

I

100.0

17me (seconds)

J

2O0.0 .300.0

i Offer Rate

-'- FIFO Throughput

o----------e SFQ Throughput

Table 11. Resource Usage

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (percentage of DELAY DELAY
STREAM NUMBER 1.344 Mb/s) 1.344 Mb/s) (seconds) VARIANCE

Lawnclart to Ant fifo21 94.72 84.71 0.5714 0.0065

sfq24 94.72 74.99 0.8562 0.0189

MM6 to Dart5 fifo21 20.01 12.34 0.5337 0.0015

sfq24 20.01 20.01 0.0802 0.0001

Malarky to Dartnetl fifo21 94.72 94.68 0.1455 0.0069

sfq24 94.72 94.46 0.2808 0.0153

32

W

5 CONCLUSIONS

SFQ is an efficient queueing discipline for providing equal access to the available bandwidth.

The isolation of the streams helps to ensure that no stream receives more than its fair share and that

each stream degrades gracefully as more streams are added. SFQ also seems to possess very good

scaling properties; but more work needs to be done to verify this. In particular, the choice of hash

function and seed perturbation technique needs further investigation. The current choices may
prove inadequate in a more stressful environment.

33

_m

Appendix E

REPORT ON SFQ AND VIRTUALCLOCK: A HYBRID ALGORITHM

Technical Report • October 1993

A HYBRID ALGORITHM FOR COMBINING
BEST-EFFORT AND RESOURCE
RESERVATION SERVICE

Barbara A. Denny, Computer Scientist
Information and Telecommunications Sciences Center

Project 8600
ITAD-8600-TR-93-168R

Prepared for:

National Aeronautics and Space Administration (NASA)
Ames Research Center
Moffett Field, California 94035

Attn: Dr. Henry Lure, Code RI, M/S:244-7

and

Advanced Research Projects Agency
3701 North Fairfax Drive

Arlington, Virginia 22203-1714

Attn: Dr. Paul Mockapetns

Approved by:

Boyd C. Fair, Director
Information and Telecommunications Sciences Center

Michael S. Frankel, Vice President and Director

Information, Telecommunications, and Automation Division

_w

CONTENTS

EXECUTIVE SUMMARY .. 1

1 BACKGROUND .. 2

2 METHOD OF APPROACH .. 3

2.1 SYSTEM ARCHITECTURE .. 3

2.2 CANDIDATE RESOURCE RESERVATION ALGORITHMS 3

2.3 BEST-EFFORTTRAFFIC ALGORITHMS .. 5

2.4 HYBRID ALGORITHM .. 5

3 IMPLEMENTATION .. 6

3.1 SOFTWARE DETAILS ... 6

3.2 TRAFFIC CONTROL INTERFACE ABSTRACTION 6

4 EXPERIMENTS ... 7

4.1 ALGORITHMS TESTED ... 9

4.2 EXPERIMENT DESCRIPTION ... 10

5 CONCLUSION ... 13

APPENDIX

EXPERIMENT RESULTS

FIGURES

1 System Architecture ... 4

2 Experiment Topology ... 8

3 Experiment Traffic Flow .. 11

TABLES
1 Traffic Conditions ... 11

2 Traffic with Reserved Resources ... 12

3 Best-Effort Traffic ... 12

ACKNOWLEDG EMENTS

We wish to thank Charles Lynn of Bolt Beranek and Newman Inc. for providing us with the

ST-II software, including VirtualClock and the traffic control abstraction software. His quick

resolution of some implementation issues was an immense help, enabling us to continue our work

in a timely manner.

iii

EXECUTIVE SUMMARY

SRI International (SRI) has developed an improved queueing algorithm, known as Stochastic

Fairness Queueing (SFQ), for best-effort traffic (i.e., traffic that does not require any guaranteed

service). SFQ is a probabilistic variant of strict fair queueing: instead of a single queue being

'allocated per flow, a fixed number of queues is used and a hash function maps the IP source and

destination to a particular queue. However, new applications, such as audio and video, require

certain delivery constraints to be met that SFQ was not designed to provide. Many new scheduling

algorithms are being developed to meet these resource needs. A hybrid algorithm combining the

strengths of SFQ with a resource reservation algorithm would better meet all the needs or"the users
of a network.

This report covers the design, implementation, and experimentation with such an algorithm.

VirtualClock was selected as the resource reservation to combine with SFQ, because other

algorithms and approaches were not mature enough or not in a form available for our use.

VirtualClock is a rate-based scheduling algorithm that orders packets in a single queue according

to a timestamp. This timestamp is based on the average arrival rate specified in the reservation

request. For the routers to receive this resource request, a mechanism must exist to pass the flow

specification. ST-II provides this functionality, and since a VirtualClock implementation was

included in the release of the ST-I/protocol, we are using ST-II. To implement our new algorithm,

we chose to keep each queue structure and algorithm as close to the original design as possible, and

only modify the procedure to select which of the packets to transmit next. We investigated two

approaches. The first was a simple priority mechanism that always gives VirtualClock packets

priority over SFQ packets. The second approach was to interleave the packets from the two queues

by reinterpreting the timestamp used to order the VirtualClock packets as a time to send. If it is

time to transmit, or past time to transmit, the packet is taken from the VirtualClock queue;

otherwise, a packet from SFQ is taken. If this condition cannot be met, the algorithm always tries

to find a packet to send. (See Subsection 2.4 for details).

The results of the experiment we performed do show that one can effectively combine SFQ

with VirtualClock to achieve the benefit of SFQ (equal access to the available bandwidth), while

preserving the average rate requested by the reserved resource traffic. Interleaving the two queues

based on time did result in slightly better throughput than using a simple priority scheme. We

expect the interleaving algorithm to do at least as well or better than the simple priority version,

under almost all conditions. Improvements to the interleaving process are also possible. It may be

better to compute a time into the future that should be used to determine the queue from which the

next packet to be transmitted is chosen. This would reduce the probability of the "'late" delivery of

a VirtualClock packet that inadvertently gets behind a best-effort packet.

1 BACKGROUND

The advent of fast, low-cost computing power has radically changed the way networks are

used. In the past. networks primarily supported non-real time data transfer in the form of electronic

mail and file transfers, and some interactive applications such as text editing. These applications

did not require that the network meet any hard throughput or delay constraints. Efforts were

2

focusedontechniquesfor gettingthedatato itsdestinationwithminimallossand/orretransmission
of packets.Congestionwasakeyconcern,dueto thelow bandwidthof theconnectinglinks.The
currentavailabilityof audioandvideo applications,alongwith high-bandwidthnetworks,have
forcedachangein therequirementsthatnetworksneedto satisfy.Networksmustnowguarantee
thatstreamsreceivea certainlevelof performance.Currentresearch,therefore,is focusingon
solvingthis problemin theform of providingresourcereservationfor guaranteedandpredicted
service.

However,thereis still a requirementto satisfylessdemandingapplications.Wecall traffic
with suchlooserequirementsbest-effort. Historically, f'Lrst-in, first-out (FIFO) queueing has

provided this service within packet-switched networks. FIFO queueing, however, does not provide

"'fair" service. Users do not receive equal access to the available resources.* SFQ was developed

to help solve this problem. SFQ, a probabilistic variant of fair queueing, uses a hash function to

map packets into a fixed number of queues. It offers more equitable service to the available

resources than FIFO queueing, without the processing and space overhead of strict fair queueing
[Demers, Keshav, and Shenker 1989].

To satisfy all the demands on the network, i.e., guaranteed and best-effort service, a new

hybrid algorithm must be created that combines the advantages of SFQ with a prototype resource

reservation algorithm. This paper discusses the design and implementation off and experimentation

with, such an algorithm.

2 METHOD OF APPROACH

2.1 SYSTEM ARCHITECTURE

Figure 1 shows our basic architecture for combining SFQ with a resource reservation

algorithm. A classifier examines each packet and determines if it requires best-effort or resource

reservation service.The classifier then sends the packet to the appropriate service module. It is the

service module's responsibility to determine how to best meet the service demands for this packet

and place it in some kind of queueing mechanism that provides a dequeue routine to the next

processing step. Historically, this next processing step is the driver to the network interface. In our

design, a packet scheduler module intercedes to determine if a packet should be sent from the

resource reservation module or the best-effort module. The packet scheduler module then passes

the packet to the network interface driver.

2.2 CANDIDATE RESOURCE RESERVATION ALGORITHMS

Many different algorithms are currently being developed to satisfy the needs of traffic

requiring reserved resources. These include

• JF Hierarchical Resource Management with Weighted Round-Robin Service

[Jacobson and Floyd 1993; Floyd 1992]

• VirtualClock [Zhang 1989; 1990]

*Throughout this paper, fairness tollows the max-min model developed by Bertsekas and Gallager. This model tries
to maximize the allocation of each user. subject to the constraint that an increase in one user's (i's) allocation does not

cause a decrease m some txher user's allocation that is already as small as i's or smaller [Bertsckas and Gallager
1987].

3

u

OUTBOUND I

PACKETS._I

-1
CLASSIFIER

._ RESOURCE

RESERVATION

SERVICE

.__ BEST-

EFFORT

SERVICE

I PACKETSCHEDULER

_I

Figure 1. System Architecture

• Weighted Fair Queueing, as in the Integrated Services Packet Network (ISPN)

[Clark, Shenker, and Zhang 1992].

However, many of the algorithms and supporting infrastructure are still under development and

have not been released to the community or thoroughly documented. JF Hierarchial Resource

Management is too immature: there is only a set of viewgraphs explaining some of the approach

and no software has been released. VirtualClock "algorithm has been released as a queueing

mechanism used by ST-II [Topolcic 1990] in Bolt Beranek and Newman Inc. 's (BBN's) DARTnet

kernel.* Weighted Fair Queueing, in the ISPN architecture, is also currently undergoing

development and has not been released. Due to the time constraints of this project, therefore,

VirtualClock has been chosen to support resource reservation. As a minimum, any resource

reservation algorithm also requires a mechanism to supply the traffic characterization of the stream

to the router, either explicitly or implicitly. ST-II will be used to supply this functionality.

2.2.1 VirtualClock

VirtualClock is a rate-based traffic control algorithm that maintains each user's average

reserved rate by assigning a timestamp to every packet in each flow and ordering the output queue

according to this timestamp. The algorithm is as follows:

1. For the first packet in flow i, set its VirtualClock i to the real time

2. Upon receiving each packet from flow i

A. auxVC i = max(real time, auxVCi)

B. VirtualClock i = (_¢irtualClock i + Vticki) where Vtick i = 1/AR i (Average Rate

in packets/second for flow i) and auxVCi = (auxVCi+Vticki)

C. Stamp the packet with auxVC i

3. Transmit packets from 'all flows by order of increasing timestamp

4. When there is no more buffer space, drop the last packet in the queue.

*All product names mentioned in this document are the trademarks of thee respective holders.

4

To make sure the user's resource reservation is not exceeded, VirtualClock has an A/

(Averaging Interval) for each flow, where the offered rote is compared to the reserved rate, AR.

This rate is checked when the switch has received A/R i packets, where A/R i equals AR i times A/i .

If the offered rate is greater than the reserved rate, (VirtualClock i - real time) > threshold, then

some control actions may need to be taken. It"the user is using less resources (VirtualClock i < real

time), then VirtualClock i should be reset to the value o/" the real time clock. To handle priority

flows, the algorithm above should be adjusted by (real time - P), where P represents the priority.

2.3 BEST-EFFORT TRAFFIC ALGORITHMS

FIFO queueing has been used to service best-effort traffic. It is efficient and simple to

implement; however, it is "unfair." SFQ is superior to FIFO queueing in providing equal access to
the available resources. It will therefore be used to service the best-effort traffic.

2.3.1 Stochastic Fairness Queueing

SFQ is a probabilistic variant of strict fair queueing. Instead of requiring that each flow have

its own queue, SFQ has a fixed number of queues and uses a hashing function to map the IP source

and destination address into one of the queues. Packets are entered into their assigned queues in a

FIFO manner and are removed in a round-robin fashion between all nonempty queues (in the

current implementation, the round-robin service is on a packet-by-packet basis). A seed to the hash

function is occasionally perturbed, to allow a redistribution of the address pair mapping. This

mapping redistribution ensures that flows are not consistently mapped into the same queue, so that

a well-behaved source is not penalized by an ill-behaved source if the flows happen to map to the

same queue at some point in time [McKenney 1991].

2.4 HYBRID ALGORITHM

To combine SFQ with VirtualClock requires defining the packet-scheduling algorithm that

selects the queue from which the next packet will be transmitted. Two different approaches were

explored. The first is a simple priority scheme where the VirtualClock queue "always has priority

over SFQ. The second approach is an attempt to provide "fairer" service. Reserved resource traffic

should meet its scheduling requirements; however, this should not be done in a manner that could

starve the best-effort traffic, as in the simple priority scheme above. (This starvation would occur

in the case where the reserved resource traffic is high enough that there is always something in the

VirtualClock queue.) The second approach, therefore, tries to interleave the packets in both queues

while still guaranteeing the reserved resource traffic its average rate. To achieve this, we

reinterpreted the timestamp calculated by VirtualClock for packet ordering as the time to send this

packet as well. The scheduling algorithm, then, is as follows:

• If the VirtualClock queue is not empty, check the packet timestamp at the head of the

VirtualClock queue.

- If the packet timestamp is later than now and the SFQ queue is not empty, take

the packet from SFQ; otherwise, take the packet from the VirtualClock Queue.

- If the packet timestamp equals now or is earlier than now, remove the packet

from the VirtualClock Queue,

• If the Vir_ualCl_k queue is empty, try to remove the packet from SFQ.

5

Note that thisalgorithmalwaystriesto find apacketto .sendif thereis oneavailable.An
improvementto thealgorithmcould bedetermininghowfar in thefuturepacketsshouldbesent
from theVirtualClock queuebeforeabest-effortpacketis taken.This improvementwouldprevent
anyreservedresourcetraffic from being"'late"becauseof abest-effortpacket.

3 IMPLEMENTATION

The prototype implementation of this algorithm was done in version 13 of the DARTnet

kernel,* using release 1.12 of BBN's implementation of ST-II and VirtualClock. The code supplied

by BBN also included their traffic control interface abstraction, so we decided to try out their model

in our implementation of the algorithm [Lynn 1993]. This interface consists of a series of routines

that the algorithm designer must supply, based upon the requirements of their control algorithm.

For our approach this consisted of defining initialization, classification, enforcement, enqueueing,

and dequeueing. To enable the user to switch between different algorithms, a dram function is also

supplied that empties both queues.

3.1 SOFTWARE DETAILS

The initialization procedure consists of calling vc_init_func and sfq_init_func, which allocate

the proper data structures. From a functional description, the classifier for our approach is simple.

If the traffic belongs to an allocated ST-II stream, then all packets belonging to that stream are sent

to the VirtualClock queue. All other traffic is sent to SFQ. The classification function in the code,

however, is currently NULL, due to the way the ST-II code is implemented. The ST-II packets are

not mapped to a stream, i.e., classified until the enforce function, vc enf_func, is called. At this

point a RsrcClnt structure is allocated to the variable that contains the result of the classification

function. Because our classification scheme is simple, assigning such a structure to best-effort

traffic seemed overly cumbersome and a waste of space. The current implementation offered

another mechanism for indicating what kind of service a packet required, so we decided to use it

instead. There is now a new mbuf type called MT_TCDATA. The mbuf associated with a packet

is assigned this type, if the packet needs to be stamped with a VirtualClock dmestamp; otherwise,

the mbuf is simply set to MT_DATA. Since this is exactly the information we needed, we decided

to use the mbuf type for our classification mechanism. The enqueue routine calls the VirtualClock

algorithm if the packet is type MT_TCDATA; otherwise, the SFQ enqueue routine is called. The

dequeue routine uses the algorithm presented in Subsection 2.4.

3.2 TRAFFIC CONTROL INTERFACE ABSTRACTION

Our experiences in using the traffic control abstraction were positive; however, more work

needs to be done to complete the abstraction. Our biggest problem in dealing with the current

implementation was the lack of support for dealing with multiple queues. In standard BSD UNIX,

the output queue associated with an interface is located in the ifq_head pointer of the ifnet structure.

VirtualClock naturally uses this pointer as the place to store its queue. Unfortunately, the routines

written to support SFQ also assume that this is the location for SFQ's main pointer. The current

BBN interface extends the Lfnet pointer to store more information, including some fields ff_r storing

*A 4.1.1 Sun-OS based UNIX kernel.

traffic-control-specific data. We therefore used one of these pointers, s2p, to store the SFQ head

pointer and modified the SFQ routines to use the pointer to this extended if-net structure, aNetIF.

However, this variable was the last available pointer. We therefore recommend that the number of

these pointers should probably be extended to better serve more complex algorithms.

The abstraction 'also needs to be extended to include 'all queue manipulation routines. In

particular, there is no provision for redefining the QFULL macro. This causes a problem for our

algorithm, because one needs to look at two different data areas to determine if a queue is full;

moreover, the algorithm for determining this information is different for each structure. Due to the

way the driver was written, we were able to work around this problem by freeing the packet after

a call to the enqueue routine of SFQ if the appropriate queue was full. However, this is not a good

solution because other drivers may not be written the same way, and could result in system crashes

if care is not taken in the installation. We also had problems with the driver because it would access

the length associated with the queue in the if-net structure and use that to determine if there was a

packet available to transmit. This optimization created problems in our dual queue design because

the counters for the SFQ structure were in a different area, so the presence of SFQ packets would

not cause any packets to be sent to the interface. We could not easily merge the necessary counters

into the if'net structure area, because that area was being used by VirtualClock. Even though

inefficiency may result, the information hiding between the driver and the queueing routines needs

to be improved. We cun_ntly have removed this optimization of accessing the queue's data

structure from the HSIS driver.

In implementing our algorithm, we also noticed the code was not completed for the Ethemet.

There is no ability to call a different dequeue function. We believe this code was left incomplete

because BBN did not have the source available and this kind of support was not necessary for

VirtualClock. The incomplete code did not interfere with our test, because we designed our

experiment to avoid needing to use the hybrid algorithm on the Ethemet interface.

The implementation of the classification mechanism for ST-II did not seem as modular as it

could have been. As mentioned previously, classification does not happen until enforcement; so we

needed to rethink the design for this function. We do not believe this should have been necessary.

Finally, to add SFQ to this abstraction only involved minor modifications to the existing SFQ

code. Besides changing the location of the existing head pointer and allowing the routines to access

the appropriate area in the ANetlF structure, we only needed to change the software to use routines
instead of macros.

4 EXPERIMENTS

The experiments were executed on DARTnet, an ARPA research testbed network. DARTnet

is a cross-country T1 network* that connects research sites via T1 tail circuits. The routers and

most of the hosts are SPARC 1+, with the exception of two hosts, MM5 and Malarky, which are

SPARC 2s. Figure 2 illustrates the portion of the network used in the experiment.

*Due to hardware constraints, Me network operates at 1.334 Mb/s instead of 1.536 Mb/s.

7

MM5

(SPARC2) DARTNET1

ETHERNET

DART3 DART5

ETHERNET

T1

LA POP[

r7

T1

T1

13

ETHERNET

T1

MALARKY
POP T1 (IPX)

ETHERNET

ANT

Figure 2. Experiment Topology

The experiment was run at least twice to verify its repeatability; however, in this report we
will include only a single case. Each run of the experiment consisted of executing the experiment

with three different traffic-control algorithms installed on the output interface of the T1 lines.

Best-effort traffic, represented by UDP traffic, originated from machines whose queueing

algorithm was FIFO. Reserved resource traffic, represented by ST-II streams, originated from

machines that used VirtualClock as the queueing mechanism. Each stream in the experiment ran

for 245 seconds, and the experiment was designed to overload the link so that the algorithm's

behavior in times of congestion could be observed.

The DARTnet Traffic Generator (TG) was used to create the traffic streams. TG is an

SRI-developed tool for creating high-quality and repeatable experiments on packet-switched

networks. It executes as a source and sink program that enables experimenters to generate one-way

traffic streams and gather statistical data about the transmission and reception of each stream. The

TG is driven by a control language (script) that specifies different operating modes, protocols,

addressing functions, traffic parameters, and execution times. At present, packet lengths and packet

offer rates can be specified according to the following distributions: constant, uniform,

exponential, and 2-state Markov. The measurements, therefore, are from user process to user

process.

8

4.1 ALGORITHMS TESTED

To evaluate the performance of our hybrid algorithm, we choose to use the default algorithm

in the traffic control interface that BBN supplied.* This baseline algorithm consisted of a single

queue where VirtualClock and FIFO techniques were merged. Established streams in ST-II used

VirtualClock while best-effort traffic used FIFO. The other two algorithms consisted of the

versions of the hybrid algorithm described in Subsection 2.4. The next subsection provides more

details on the implementation of these algorithms.

4.1.1 Configuration for the Baseline Algorithm

The VirtualClock algorithm, as implemented by BBN, varies from the description presented

in Subsection 2.2.1. The main difference involves the actions taken to handle congestion. In the

BBN implementation, packets are dropped as soon as the throughput allocated for the Averaging

Interval is exceeded, rather than when the switch runs out of buffers. The throughput for an

Averaging Interval is based upon the quality-of-service parameters spec filed by TG (average

packet size and average packet rate). The current time period for the Averaging Interval is 1

second. Since BBN has an enforcement policy which prevents any stream for trying to send more

than it is allowed during an interval, no control actions are necessary. Any best-effort traffic, i.e.

traffic without an ST-II flow specification, is appended to the end of the VirtualClock packets in

an FIFO manner. Thus, any best-effort traffic will resemble the results you would get with an FIFO

queueing mechanism. There are no constraints to the depth of the queue when a VirmalClock

packet needs to be enqueued. However, no best-effort traffic will be added after the queue contains

more than 100 packets. There is also an admission control procedure for VirtualClock traffic; no

stream will be accepted once the reserved capacity of the link has been totally allocated. This

reserved capacity is currently set to 0.92 Mb/s on the 1.34.4 Mb/s line for DARTnet.

4.1.2 Configuration for the Hybrid Algorithm

As mentioned previously, the hybrid algorithm consists of two logical queues: one

VirtualClock and one SFQ. Any traffic that would be handled by VirtualClock is treated in the

same manner as the baseline algorithm. SFQ, however, has many parameters that can be tuned to

improve its performance. These parameters include

• Individual queue depth

- Total number of queues

• Hash function.

The setting of these parameters for these experiments was somewhat arbitrary, because the

experiment design was on a small enough scale that these factors did not affect the outcome

significantly in most cases. More research needs to be done to determine the optimum choice for

larger scenarios. The parameters chosen are described next.

*We originally planned to use a trYtic control algccithm that only provided FIFO queueing and n(_ resource

management/or our baseline measurements. However. we experienced problems setting up ST-II streams with TG
for this _gorithm. The streams could not be established, so we could not document this algorithm in this report. This
appears to be an Sq'-lI implementation problem in the kernel.

9

Forthesetof addressesusedin theexperiments,wechosean XOR type of hash function with

seed perturbation enabled. The total number of queues was left to our default value of 257. Since

this queue space is sufficiently large, we do not anticipate any collisions. We did verify the absence

of collisions by checking for the t_"st 200 changes of the seed for the addresses used: there were no

collisions. The queue depth was set to 100 for each queue (i.e., each hash bucket). This parameter

value was chosen to match the queue depth provided by the baseline algorithm used in this

experiment.

Currently, SFQ supports only I1:' addresses. Due to the packet classification mechanism

currently used, it may be possible that some ST-II traffic will use SFQ. Since the ST-II header and

addressing format are completely different from those of IP, we chose to always assign any ST-II

traffic arriving for SFQ to queue 256, where raw traffic also is queued. This assignment is not

expected to interfere with our results, since the amount of ST-II traffic arriving for SFQ is expected

to be small.

4.2 EXPERIMENT DESCRIPTION

4.2.1 Objective and Procedure

This experiment was designed to demonstrate the two key design goals of our hybrid

algorithm. In particular, these goals are that

• Reserved resource traffic streams acquire their requested average packet

generation rate

• Best-effort traffic streams receive the benefits of SFQ (streams receive equal

portions of the available bandwidth, and hosts sending under their allocation

are rewarded).

In this experiment, four different streams were used; two streams of UDP, i.e. best-effort, traffic
and two streams of ST-II, i.e., reserved resource, traffic. The reserved resource streams were

slightly overbooked in their reservation, to ensure sufficient resources at all times. The best-effort

traffic was used to overload the network. Table 1 and Figure 3 provide a description of the traffic

conditions during the time of the experiment.

4.2.2 Data Description

For the reserved resource traffic, the graphs in the Appendix show the offered and received

throughput, and the offered and received generation rate. For the best-effort traffic, the graphs

show the offered and received throughput. The naming conventions used in the subtitles indicate

the algorithm used: VC stands for the baseline algorithm; VC P SFQ indicates VirtualClock with

priority over SFQ; and VC_SFQ indicates interleaving based on time to send.

10

Table 1. Traffic Conditions

SOURCE

DARTNET1

DES_NATION

DART3

TYPE OF
TRAFRC

Reserved

ARRIVAL
DISTRIBUTION

Constant

PACKETS
PER SECOND"

PACKET SIZE
IN BYTES

(INCLUDING
HEADERS

ABOVE
NETWORK

LAYER)

PERCENTAGE
OF

BANDWlDTHt

22 782 10

SUN DART5 Reserved Constant 66 782 30

MM5 MALARKY Best-effort Exponential 130 782 60

PARC ANT Best-effort Exponential 43 782 20

*The numbers of packets are approximate.

*Percentages are approximate.

MM5

(SPARC2) DARTNET1 DART3 DART5

MALARKY

(IPX)

ANT

BEST-EFFORT STREAM

,..,..,,m RESERVED RESOURCE STREAM

Figure 3. Experiment Traffic Flow

11

Table 2 summarizes the results of the experiment with the reserved resource traffic, including

the average offer rate as a packet generation rate, average receive rate, average offer rate as a

percentage of bandwidth, average throughput, average delay, and delay variance for each stream.

Table 2. Traffic with Reserved Resources

STREAM

DARTNET1 to
DART3

SUN to DART5

AVERAGE AVERAGE

PACKET PACKET AVE RAGE AVE RAG E

GENERATION RECEIVE OFFER RATE THROUGHPUT

ALGORITHM RATE RATE (percentage (percentage of AVERAGE DELAY

USED (packets/s) (packets/s) of 1.344 Mb/s) 1.344 MWs) DELAY (s) VARIANCE (8)

VC 21.941 7 19.4153 10.21 9.04 0.0873 0.0004

VC P SFQ 21.9408 21.9387 10,21 10.21 0.0745 0.0000

VC _SFQ

VC

21.9399

65.8046

21.9367

52.4324

10.21

30.63

10.21

24.40

0.0796 0.0000

0.0742 0.0002

VC _P_SFQ 65.8075 65.8039 30.63 30.63 0.0717 0.0000

VC _SFQ 65.8071 65.8023 30.63 30.63 0.0709 0.0000

Table 3 summarizes the results of the experiment with the best-effort traffic, including the

average offer rate as a percentage of bandwidth, average throughput, average delay, and delay
variance for each stream.

Table 3. Best-Effort Traffic

AVERAGE AVERAGE

OFFER RATE THROUGHPUT

ALGORITHM (percentage of (percentage of AVERAGE DELAY

STREAM USED 1.,144 Mb/s) 1.344 Mb/s) DELAY (s) VARIANCE (s)

MM5 to MALARKY VC 60.26 48.02 6.2137 0.9580

VC P SFQ 60.26 34.04 1.4468 0.0219

VC_SFQ 60.26 35.51 1.3608 0.0200

PARC to ANT VC 20.02 15.29 6.1479 0.9836

VC P SFQ

VC_SFQ

20.01

20.02

20.01

20.01

0.0762 0.0010

0.0708 0.0008

4.2.3 Results

The results of this experiment show that both versions of the hybrid algorithm satisfy the

reservation requests and deliver fairer service for best-effort traffic than the baseline algorithm.

(The best-effort stream that demanded 20% of the remaining 60% received its fair share of 20%

under our hybrid algorithm. Under the baseline algorithm, it received only -15 %, or about 76% of

its requested throughput; therefore, this stream did not receive a fair share of the available

bandwidth). The best-effort traffic also received better service under the hybrid algorithm than the

baseline algorithm; the average delay and variance in delay was significantly lower.

12

The two versions of the hybrid algorithm behaved almost identically in our experiment.

Interleaving the two queues based on time did result in slightly better throughput for the one

best-effort stream, MM5 to Malarky, that could vary in the amount of bandwidth it received. We

expect the interleaving algorithm to at least do as well or better than the simple priority version
under almost all conditions.

The failure of the baseline algorithm to deliver the requested rate of service for the reserved

resource traffic is probably not significant. We believe there is a bug in the ST-II implementation,

because the bottleneck node, AMES, reported memory allocation problems during all attempted

executions of the baseline algorithm. Resolving this problem, however, was beyond the scope of

our project.

5 CONCLUSION

Combining SFQ with VirtualClock can effectively satisfy the demands of resource

reservation traffic while providing best-effort traffic with equal access to the remaining bandwidth.

Interleaving the packets from the VirtualClock queue and SFQ seems to be better than a simple

priority scheme. Interleaving provides fairer access to the network by allowing best-effort traffic

to be sent as soon as possible, without interfering with the scheduling requirements of the reserved

resource traffic, and also achieved slightly better throughput than a simple priority scheme. The

interleaving algorithm could probably be improved by calculating the window during which the

next virtual packet should be sent, so as to prevent "'late" delivery of the packet. The baseline

algorithm, which gave priority to VirtualClock packets over FIFO best-effort packets, can result in

poor performance for the best-effort traffic. Finally, the generic traffic control abstraction that BBN

is developing provided a good framework for developing the algorithm. However, working with

multiple queues was not as easy as anticipated. The abstraction of the queueing mechanism was

not complete, and lack of information hiding in the driver caused some initial bugs.

13

REFERENCES

Bertsekas, D., and R. Gallager. 1987. Data Networks, Prentice-Hall, Inc., Englewood Cliffs, New

Jersey.

Clark, D., S. Shenker, and L. Zhang. 1992. "'Supporting Real-Time Applications in an Integrated

Services Packet Network: Architecture and Mechanism," Proc. ofACM SIGCOM, pp. 14-26.

Demers, A., S. Keshav, and S. Shenker. 1989. "'Analysis and Simulation of a Fair Queueing

Algorithm," Proc. of ACM SIGCOMM, pp. 1-12.

Floyd, S. 1992. "'A Report on Link-Sharing Experiments," draft paper, Lawrence Berkeley

Laboratory, Berkeley, California.

Jacobson, V., and S. Floyd. 1993. Hierarchical Resource Management, unpublished work,

Lawrence Berkeley Laboratory, Berkeley, California.

Lynn, C. 1993. "'Net Interface Extension Memo," draft technical note, Bolt Beranek and Newman

Inc., Cambridge, Massachusetts.

McKenney, P. 1991. "Stochastic Fairness Queueing," in lnternetworking: Research and

Experience, Vol. 2, pp. 113-131.

Topolcic, C., ed. 1990. "'Experimental Intemet Stream Protocol, Version 2 (ST-II)," RFC 1 190.

Zhang, L. 1989. "'A New Architecture for Packet Switching Network Protocols," Doctoral

dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Zhang, L. 1990. "'VirtualClock: A New Tra_Wlc Control Algorithm for Packet Switching

Networks," Proc. of ACM SIGCOMM, pp.19-29.

14

Appendix F

AN ANNOTATED BIBLIOGRAPHY FOR CONGESTION CONTROL AND
R ESOURCE RESERVATION

Technical Report-March 1993

ANNOTATED BIBLIOGRAPHY FOR
CONGESTION CONTROL AND RESOURCE
RESERVATION

Diane S. Lee, Sr. Research Engineer

Barbara A. Denny, Computer Scientist
Information and Telecommunications Sciences Center

Project 8600
ITAD-8600-TR-93-74

Prepared for:

NASA Ames Research Center
Moffett Field, California 94035

Attn: Dr. Henry Lum, Code RI, M/S: 244-7

and

Defense Advanced Research Projects Agency
3701 North Fairfax Drive

Arlington, Virginia 22203-1714

Attn: Dr. Paul Mockapetris

Approved by:

Boyd C. Fair, Director
Information and Telecommunications Sciences Center

Michael S. Frankel, Vice President and Director
Information, Telecommunications, and Automation Division

CONTENTS

1

2

INTRODUCTION ... 1

BIBLIOGRAPHY ... 2

2.1 JAIN, 1990 .. 2

2.2 JAIN, 1991 .. 4

2.3 KUROSE, 1993 ... 6

2.4 MAXEMCHUK AND EL AZRKI, 1990 , .. 9
2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

MUKHERJEE AND STRIKWERDA, 1991 .. 11

PARULKAR AND TURNER, 1990 .. 13

BALA, CIDON, AND SOHRABY, 1990 ... 15

CLARK, SHENKER, AND ZHANG, 1992 ... 17

FLOYD AND JACOBSON, 1992 .. 21

GOLESTANI, 1990 ... 23

LAI, 1 990 .. 25

MITRA, 1990 ... 27

RAMAKRISHNAN AND JAIN, 1988 ... 29

SHACHAM AND MCKENNEY, 1990 .. 31

WlLLIAMSON AND CHERITON, 1991 ... 33

ZHANG, 1990 ... 35

ZHANG, DEERING, ESTRIN, SHENKER, AND ZAPPALA, 1993 37

m

1 INTRODUCTION

SRI Intemation'aJ (SRI) has prepared an annotated bibliography of recent articles involving

congestion control in high-speed networks, and resource reservation protocols by DARTnet*

researchers. A synopsis of each article is provided, along with an evaluation of the presentation and

a categorization of the information presented. After surveying the collection, we determined that

each article belongs to one of four categories: tutorial, overview, model/methodology, or technical

approach/solution to the problem space. The assignment of each article to a category is summarized
below.

Tutorial

- Jain, 1990

Overview

- Jain, 1991

Kurose, 1993

Maxemchuk and Azrki, 1990

Model/Methodology

Mukherjee and Strikwerda, 1991

Parulkar and Turner, 1990

Technical Approach/Solution

Bala, Cidon, and Sohraby, 1990

Clark, Shenker, and Zhang, 1992

- Floyd and Jacobson, 1992

- Golestani, 1990

- Lai, 1990

- Mitra. 1990

- Ramkrishnan and Jain, 1988

- Shacham and McKenney, 1990

- Williamson and Cheriton, 1991

- Zhang, 1990

- Zhang, Deering, Exn'in, Shenker, and Zappala, 1993.

*DARTnet is a T1 testbed network sponsored by DARPA.

2 BIBLIOGRAPHY

2.1 JAIN, 1990

This paper summarizes Raj Jam's article enti tied "'C_ngestion Control in Computer

Networks: Issues and Trends," which appeared in the May 1990 issue of lEEE Network Magazine.

The article can be found on pages 24 through 30.

2.1.1 Summary

This paper discusses the following topics:

• Myths about congestion control

• Classification of congestion problems and solutions

• Requirements and policies affecting the design of congestion control schemes

• Proposals for congestion control schemes

• Topics for research.

Jain t-trst clears up some myths about congestion control. He states that congestion is not

caused by shortages of buffer space, slow links, or slow processors; increases/improvements of

these resources will not cause congestion to go away. Congestion is not a static resource shortage

problem; it is a dynamic resource allocation problem.

Jain goes on tO classity congestion problems and solutions by first defining congestion (i.e.

during any time interval, congestion occurs when the total sum of demands on a resource is more

than its available capacity). Congestion schemes are then categorized into resource creation and

demand reduction schemes. The latter scheme includes service denial, service degradation, and

scheduling. Both resource creation and demand reduction schemes require a feedback and control

element. A description of several feedback mechanisms is provided (e.g., feedback messages,

feedback in routing messages, rejection of further traffic, probe packets, and feedback fields in

packets) and "alternatives for the location of control are discussed (e.g., transport layer, network

access, network layer, and data link layer). Jain emphasizes that the control and feedback rates for

congestion control schemes should be similar; otherwise the system will have oscillatory or

unresponsive behavior.

The requirements that congestion control schemes must meet are briefly reviewed. The

schemes must have low overhead, be fair, be responsive, work in unfavorable environments, and

be s_ially optimal (e.g., total network performance must be optimized). The author goes on to

discuss architectural/implementation issues that "affect congestion control schemes. These include

network policy (e.g., connection oriented versus connectionless); packet queuing; packet drop;

route selection; packet lifetime; round-trip delay estimation and timeout-interval algorithms;

packet retransmission; packet acknowledgment; flow control (window based versus rate based);

and buffer management.

Next, the author describes three congestion schemes that the Digital Equipment Corporation

(DEC) has recently proposed. References are also provided that detail the following schemes:

-I

2

• Time-Out Based Congestion Control is based on the idea that packet loss is a good

indicator of congestion; thus, on a packet timeout, network load should be reduced.

Three propos',tls are given that differ by the packet window sizing algorithm

(parabolic increase, slow start, and linear increase.)

• DECbit* Scheme for Congestion Avoidance uses a single bit in the network header.

(The discussion distinguishes between congestion avoidance and congestion control

schemes)."

• Delay-Based Scheme for Congestion Avoidance measures delay and adjusts the

traffic depending upon the delay.

These three schemes do not require any additional packets, and all parameters are

dimensionless (i.e., the schemes do not use any parameters).

Finally, Jain provides his assessment of areas of research in congestion control including path

splitting, heterogeneous networks, dynamic link creation, server congestion, and integrated

networks with voice and data.

2.1.2 General Comments

This paper is a good tutorial on congestion control, providing definitions and discussing

problems, general solutions, and future areas of research. This is not a technical article-in most

cases Jain refers to papers that detail the topics he briefly discusses. There is an extensive list of

references, many of which are articles from recent journals.

2.1.3 Categorization

General tutorial on congestion control.

*All product names mentioned in this document are the trademarks of their respective holders.

2.2 JAIN, 1991

This paper summarizes Raj Jain's technical report entitled "'Myths About Congestion

Management in High-Speed Networks." It wa,_ published by Digital Equipment Corporation in

January 199 ! under the number DEC-TR-726.

2.2.1 Summary

In additi_ to discussing myths about congestion control and traffic patterns on high-speed

networks, Jain's paper looks at the pros and cons of several congestion control and avoidance

techniques. Techniques discussed include:

• Window versus rate control

• Router-based versus source-based controls

• Back pressure

• Prior reservation versus walk-in.

Jain concludes with a discussion of a congestion management strategy.

Jain tk,-st clears up some myths about congestion control. He states that congestion is not

caused by shortages of buffer space, slow links, or slow processors; increases/improvements of

these resources will not cause congestion to go away. Congestion is not a static resource shortage

problem; it is a dynamic resource allocation problem. Jain also describes myths regarding the

appropriateness for high-speed networks of the congestion control and avoidance techniques listed

above. Jain argues that the key issue in the design or selection of a congestion management scheme

is the traffic pattern that depends upon the application; the design should accommodate the

characteristics of a number of applications, simultaneously.

The following briefly highlights the issues Jam presents for each of the congestion

management techniques listed above. Jain's discussions are backed up by references to work

performed by other researchers.

2.2.1.1 Window Versus Rate Control

Most current network architectures utilize window mechanisms for flow control; however, the

author advocate the use of rate-based controls for high-speed networks. Window-based flow

control schemes originated from the desire to keep memory from overtlowing; but as memory is

no longer the bottleneck, other schemes should be considered. Problems with window-based

schemes are noted. With some implementations of window-based controls, all packets of a window

can be transmitted back to back resulting in bursty traffic. Additionally, much high-speed traffic is

stream oriented, requiring a guarantee based on rate rather than count.

There are, however, misconceptions about rate-based controls. It is not generally understood

that specifying the rate requires two quantities (the number of packets, n, over a period 7), nor is it

understood that rate-based controls are hop-by-hop mechanisms that cannot be enforced end-to-

end unless all intermediate systems are aware of the rate parameters zmd are required to enforce

them. Finally, with dynamic rate-based controls there is a possibility of significant increase in

packet queue lengths when the total input rate is close to the capacity.

4

2.2.1.2 Router-Based Versus Source-Based Controls

With source-based conrail schemes, information is fed back to the sources (end systems) that

initiate remedial control action: examples include slow-start, DECbit, and Congestion Using

Timeout at the End-to-end layer (CUTE). Arguments presented against source-based routing

include (1) significant delay between sensing the congestion and taking remedial action, (2) lack

of cooperation by sources, and (3) injection of additional packets into the network.

Although router-based control schemes do not suffer from problems characteristic of source-

based schemes, they do have their problems. The key problem is that they introduce complexity in

the intermediate nodes (routers) that are shared resources. Jain discusses schemes that reduce this

complexity (e.g., implicit feedback schemes, and specially coded packets). Examples of router-

based controls are random-drop policy, fair queueing, and backpressure.

Jain concludes that router-based controls are required for fairness and work under short-

duration overloads, while source-based controls are required for longer overloads.

2.2.1.3 Back Pressure

Back pressure is a form of hop-by-hop, on/off flow control. Jain argues that back pressure is

a data link-level mechanism, and should be used only tbr short-duration overloads. For long-

duration overloads, back pressure should be supplemented with a transport-level or network access
level control scheme.

2.2.1.4 Prior Reservation Versus Walk-In

Prior reservation has advantages and disadvantages. It is preferred if bandwidth or delay

guarantees are difficult to achieve with walk-in service. Additionally, prior reservation makes

resource management easier, since demands and capacities are known in advance. On the other

hand, prior-reservation schemes waste unused reserved resources and incur setup overhead. Jain

concludes that reservation is good for long, steady sessions, while walk-in service is required for

short bursty traffic and is suitable for highly dynamic environments.

Finally, Jain argues that the type of congestion control scheme needed is dependent upon the

duration of the overload; and every network can have overloads of all durations, every network

needs a combination of controls at various levels. As a general rule of thumb, the longer the

duration, the higher the layer at which control should be exercised.

2.2.2 General Comments

This paper provides good comparisons and arguments for and against a number of techniques

for handling congestion in high-speed networks. It is tutorial in nature, in that it is not very

technical and attempts to cover many topics in congestion management. In many cases, references

are made to papers that detail the topics briefly discussed. There is an extensive list of references,

many of which are articles from recent journals.

2.2.3 Categorization

General tutorial playing devil's advocate for many techniques tbr handling congestion
control.

5

2.3 KUROSE, 1993

This paper summarizes Jim Kurose's article entitled "Open Issues and Challenges in

Providing Quality of Service Guarantees in High-Speed Network=s," which appeared in the January

1993 issue of Computer Communication Review, Volume 23, Number I. The article can be found

on pages 6 through 15.

2.3.1 Summary

Kurose identifies the challenges and open issues involved in providing quality-of-service

(QOS) guarantees to sessions in a high-speed wide area network and briefly surveys research in

this area. After providing clef'tuitions and discussing fundamental challenges associated with QOS

guarantees, the author describes and discusses four approaches towards providing QOS guarantees:

(1) tightly controlled, (2) approximate, (3) bounding, and (4) observation based.

Kurose begins by describing the problem. Unlike traditional data networks, future high-speed

networks will be required to carry a broad range of traffic classes. These networks will have to do

so while providing a guaranteed performance or quality of service to many of these traffic classes.

The actual QOS performance metrics vary from one application to another, but are likely to include

such measures as cell loss, delay, and jitter guarantees. The need to provide end-to-end QOS

guarantees while taking advantage of the resource gains offered by a statistically multiplexed

transport mechanism remains an important, largely unsolved problem. The complexity of this issue

can be seen by the simple question that must be answered each time a call/session arrives: "'Can

the requested call be accepted by the network at its requested QOS, without violating existing QOS

guarantees made to ongoing calls ?'"

The author distinguishes QOS guarantees by deterministic guarantees and statistical

guarantees. In the deterministic case, guarantees provide a bound on the pertbrmance of all cells

within a session. Statistical guarantees on the other hand, promise that no more than a specified

fraction of cells will see performance below a certain specified value. A number of references are

provided that discuss and compare these QOS categories.

The challenges posed by characterizing performance (and thus providing QOS guarantees)

are briefly explained by the author. First, sources of traffic such as packetized voice and video

exhibit correlated, time-varying behavior that is significantly more complex than that of traditional

data network sources. Second, since QOS requirements are defined on an individual, per-session

basis, it is no longer sufficient to simply determine the performance of the aggregated network

traffic. And finally, the complex interactions among sessions must be considered if they interfere

with each other while they pass through various network nodes. An illustration is provided of the

later issue, concluding that to provide guarantees, an algorithm must either (1) provide

multiplexing mechanisms that avoid changes in traffic characteristics when sessions are

multiplexed together (i.e.. approach 1. above), or (2) characterize the increases in peak rates, as

well as the other changes in a session's traffic characteristics, that occur as a result of multiplexing

(i.e., approaches 2.3, and 4, above.)

The latter half of the paper discusses the pros and cons, and issues relating to these

approaches, and are summarized below.

Tightly Controlled approaches use a non-work-conserving multiplexing (queueing)

discipline to ensure that an individual session's output traffic characteristics are the same as that

session's input tra/'fic characteri sties.

6

• Pro: The characteristics of traffic are preserved as it passes through the network, and

consequently performance bounds can be computed in a simple manner.

• Con: A fairly sophisticated, non-work-conserving queueing discipline must be

implemented that tracks each individual session's timing requirements on a per-
session basis.

• Con: A session admitted to the network essentially "'reserves" bandwidth based on

its peak rate, potentially leaving the links significantly under utilized.

Approximate approaches are characterized by relatively "'simple" models for traffic sources

at the network's edge (and within the network).

• Pro: Simplicity makes these approaches well suited tbr real-time, on-line

implementations.

• Pro: This approach takes advantage of statistical multiplexing gains, potentially

carrying traffic whose peak rate exceeds link capacity.

• Con: QOS computations are "'approximate," tending to be conservative.

• Issue: It is unknown to what extent more complicated sources (voice and video, for

example) can be characterized by the relatively simple approximate models such as
an on/off source.

• Issue: A potentiai concern is that traffic models, whether at the source or deep within

the network, require some form of Markovian ,assumptions.

Bounding approaches explicitly account for the tact that a session's traffic does indeed

change each time it passes through a work-conserving multiplexer.

• Issue: For statistical bounding approaches, a concern is the extent to which traffic can

be characterized by the form of the distributional bounds required by various

approaches.

• Issue: For statistical and deterministic approaches, a concern is their reliance on the

ability to bound the maximum length of each queue's busy period for a given set of

traffic specifications.

Observation-Based approaches use previously made measurements of certain types of traffic

sources to characterize an arriving call and in determining the call acceptance decision.

• Pro: Using a predictive service may result in a network that is more fully utilized.

• Issues: There are many research topics, including the effects of different

measurement/estimation techniques on the protocol, the overhead involved in

measurement, the influence of the number of multiplexed sessions on the reliability

of the guarantees, and a thorough study of the mechanism in a large network
environment.

2.3.2 General Comments

This paper provides a broad description of four approaches tor providing quality of service

guarantees. Th is is not a technical article; in most cases Kurose refers to papers that detail the topics

he briefly discusses. There is an extensive list of references, man y of which are articles from recent

journals.

2.3.3 Categorization

Dimussion of issues in providing quality-of-service guarantees and a brief survey of research

in this area, focussing on approaches.

='F

8

2.4 MAXEMCHUK AND EL AZRKI, 1990

This paper summarizes Nicholas Maxemchuk's and Magda E1Azrki's article on "'Routing and

Flow Control in High Speed Wide Area Networks," which appeared in the Proceedings of the

IEEE in January 1990. The article can found in Vol. 78, No. 1, on pages 204 through 221.

2.4.1 Summary

This paper emphasizes routing and flow control in high-speed, wide-area, store-and-forward

networks and begins with a discussion of the following:

• Survey of routing and flow control for wide-area, local-area, and metropolitan
networks

• Classification of routing and flow control mechanisms

• Predictions for high speed networks

The authors begin by briefly comparing the characteristics of and differences between local,

metropolitan, and wide-area networks, including the cost of transmission facilities and topologies.

A history of routing and flow control mechanisms is presented for local, metropolitan, and

wide-area networks. Features, deficiencies, and adaptations of various mechanisms are presented

for a number of topologies. Mechanisms discussed include

• Routing: random, flooding, hot potato, shortest queue plus bias, delta, proportional,

dispersity, deflection

• Row Control: windowing (end to end, hop by hop), is arithmic, token passing,

random access, slotted systems.

Routing and flow control mechanisms are usually categorized by characteristics such as

centralized versus distributed control, stochastic vs. deterministic decisions, global vs. local

information, and topological dependence. For analyzing high speed networks, the authors have

classified routing and flow-control mechanisms according to the amount of processing required

and bandwidth utilization. Bandwidth utilization includes exchange of control information or

additional data bits transmitted. The amount of processing required reflects processing pertbrmed

in the intermediate nodes (i.e.. at the rate of the network) and processing performed as a packet

enters the network, or leaves the network (i.e., at the rate of the source.) This classification is

further developed to portray the cost of routing and flow control mechanisms in terms of processing

at the rate of the network and bandwidth inefficiency.

As a result of this classification, the authors make recommendations for high-speed, wide-area
networks. These include

• Routing

It an adaptive mechanism is used, it should be a scheme that adapts on a session
basis.

Datagram routing techniques that adapt using local information, including hot-

potato routing _md its derivatives (e.g., shortest queue plus bias, delta, and

dctqection routing), do, however, appear to have characteristics that are well

suited for high-speed networks. In this class of mechanisms, deflection routing

appears to be the best choice.

9

Floodingis expensivein termsof bothprocessingandbandwidth,and should

not be considered.

Fixed routing schemes that distribute data over a larger part of the network,

including dispersity and proportionally routing, look attractive.

Flow Control

Of the hop-by-hop window mechanisms, Beeforth's virtual circuit scheme

appears to be best suited to high-speed networks.

For end-to-end mechanisms, selective repeats appear to be best suited for high-

speed networks.

Single token passing and random access mechanisms do not scale well to high-

speed networks.

The slotted access mechanism appears to be well suited to high-speed networks,

requiring very little processing at the network rate and making reasonably

efficient use of bandwidth. Slotted schemes do not ensure fair access; if used

they should be combined with another scheme to negotiate rates for particular

sources.

2.4.2 General Comments

This is an excellent article. A survey of routing algorithms and flow control mechanisms for

local-area, metropolitan-area, and wide-area networks is given along with a classification of these

'algorithms' mechanisms. The descriptions of the algorithms and mechanisms are not very

technical, but the essence of each is clearly presented. Comparison of the algorithms and

mechanism is well done via graphs and is then used to justify recommendations for high-speed,

wide-area networks. References are given for all the routing and flow control mechanisms

discussed.

2.4.3 Categorization

This article surveys routing algorithms and flow control mechanisms for lot',d-area,

metrolx)litan-area, and wide-area networks, with emphasis on high-speed, wide-area, store-and-

forward networks.

10

2.5 MUKHERJEE AND STRIKWERDA, 1991

This paper summarizes the technical report "'Analysis (ff Dynamic Congestion Control

Protocols-A Fokker-Planck indent Approximation," by A. Mukherjee and J. Strikwerda. It was

published by the University of Wisconsin-Madison Computer Sciences Department in February

1991. The report number is 1003.

2.5.1 Summary

This technical report presents an analysis model and methodology, based on a queuing

system, to evaluate the performance of a wide range of feedback control schemes. The model is an

extension of the classical Fokker-Planck equation and is motivated by proposals for adaptive,

window-based congestion control algorithms by Jacobson-Rarnakrishnan-Jain (JR J). The authors

investigate the performance of congestion control protocols that dynamically change input rates

based on feedback (implicit or explicit) information received from the network. Issues of stability,

convergences (or oscillations), fairness, and the effect of delayed feedback on performance are

addressed by the model.

Specifically, the paper presents the model, motivates the analysis methodology, and derives a

Fokker-Planck approximation for the time dependent queue behavior; discusses the properties of

the JRJ algorithm when only one source is using the resource; investigates the properties of the

system with multiple sources; investigates these properties in the presence of delayed feedback;

and finally presents some conclusions. Given the high mathematical content of this paper, only a

brief description of the model is provided here, "along with a simple description of the results of the

authors' theoretical analysis. Emphasis is given to the authors' conclusions.

2.5.1.1 Model

The m(xlel the authors have chosen is motivated by the JRJ algorithm for window adjustment.

In the JRJ algorithm, when congestion is detected, the window size is decreased multiplicatively,

and is increased linearly when there is no congestion. Although this algorithm is intuitive, the

authors argue that it is not clear what values the parameters of the JRJ algorithm should take, nor

is it provably clear if the algorithm is fair or stable. To understand the behavior of dynamic

congestion control 'algorithms, the authors study a queuing system with a time varying input rate.

The input rate is adjusted periodically on the basis of some feedback that the end-point receives

about the state of the queue. Time evolution of the queue length density function is analyzed.

The authors present the following model, which is used to describe the behavior of generic

rate-control algorithms in their analysis:

d_ _ f +C O ifQ(t) <q

dt [-Ct_. if Q(t) >q

where _.(t) is the arrival rate based on the current queue length Q(t) at some bottleneck node, q is

some target queue length, and C O and C/are positive constants. This models a linear increase and

exponenti',d decrease in k, similar to JRJ.

11

2.5.1.2 Theoretical Results

The authors analyze their model by evaluating the time-dependent behavior of the joint

probability density function of the queue length and the instantaneous queue growth rate. The

following properties of this model are proved.

• The model converges in the limit with the limit points q equal to the target length

queue and _. equal to the average service rate of the queue.

• When extended to accommodate multiple sources, the model is fair in that all sources

sharing a resource get an equal share of the resource.

• With feedback delay, the model introduces oscillations. These oscillations converge

to a limit cycle (i.e., a cyclic pattern that is constant in the limit.)

2.5.1.3 Behavior of Some Existing Congestion Control Protocols

Given the analysis of the queuing model, the authors conclude the following regarding the

Jacobson-Ramakrishnan-Jain adaptive window algorithm. In the absence of feedback delay,

senders using the JILl algorithm converge to an equilibrium. The algorithm is fair in that all sources

sharing a resource get an equal share of the resource it" they use the same parameters for adjusting

their rates. A delay in the feedback information introduces cyclic behavior. If different sources get

the feedback information after different amounts of delay, the algorithm may also be unfair (i.e.,

the sources may get unequal throughput). These results strengthen the observations in previous

studies (Zhang, and Bolot and Shankar) and also identity the underlying reasons. For instance, if

the adaptive algorithm is linear-increase/exponential-decrease, then oscillations are due to delayed

feedback. However, if the adaptive algorithm is linear-increase/linear-decrease, then the

oscillations are due to both the algorithm itself and the delay in the feedback path.

The authors have demonstrated a methodology that can lead to better understanding of a wide

range of feedback control schemes.

2.5.2 General Comments

This paper is different from the others in this bibliography in that it does not propose a specific

control 'algorithm, but presents a model algorithm that is then used to help provide a solid

mathematical understanding of the behaviors of existing congestion-avoidance algorithms such as

the work by Jacobson, Ramakrishnan, and Jain. The paper is very mathematical.

2.5.3 Categorization

Analysis methodology for evaluating the behavior of existing congestion-avoidance protocols

(covering most window-based schemes).

V

12

2.6 PARULKAR AND TURNER, 1990

This paper summarizes the article "'Towards a Framework for High-Speed Communication in

a Heterogeneous Networking Environment," by Gurudatta M. Pamlkar and Jonathan S. Turner. It

appeared in the March 1990 issue of IEEE Network Magazine on pages 19 through 27,

2.6.1 Summary

This paper describes a framework for high-speed communication for a complex

heterogeneous networking environment consisting of autonomous and/or technologically

dissimilar subnetworks. The authors provide some background material on the ARPA Internet

model and on high-speed packet switching. This background motivates their discussion of an

extended internet model that includes a connection-oriented intemet protocol, an intemet

addressing scheme, a parametric description of subnet capabilities, and design and implementation

issues. A brief discussion of end-to-end and host interface issues is "also presented.

As background material, both strengths and weaknesses of the current Internet are described.

Weaknesses pointed out include insufficient raw bandwidth to support increased traffic and new

applications such as graphics and multimedia; the inability of the packet switching technology to

effectively use high bandwidths (100 Mb/s and more); the Intemet's inability to support a

predictable level of performance for its applications; and lack of central management.

To provide flexible use of the bandwidth required to support applications ranging from low-

speed data to voice, video, and high-speed data, research in high-speed packet switching has

focussed on high-performance digital transmission facilities, hardware implementations, and

connection-oriented models. The authors briefly describe their connection-oriented switching

model, which focuses on problems associated with multipoint communication where a single

connection may include a large number of end points. Their connection abstraction allows a

multipoint connection to have more than one channel and each channel to have different bandwidth

parameters and access permissions.

The authors describe the following extensions to the Internet model to allow operation in a

heterogeneous environment:

• A connection-oriented transport service at the intemet level to support applications

with demand pertbrmance requirements. The Multipoint Connection-oriented High-

pertbrmance Internet Protocol (MCHIP) was developed by the authors and is briefly

described. Examples are given of ways to provide a connection-oriented

(connectionless) internet service on and across connectionless (connection-oriented)

subnets. For further details, references are given.

• A generic address scheme to allow one to specify terminal devices that may bc

located in any of the subnetworks. The proposed form of an address is as follows:

OBJ::DOMI::DOM2::DOM3:: OBJ denotes an object (e.g., terminal) and DOM

denotes a domain (e.g., subnetwork, or subnetwork together with the address of some

entity within the subnetwork). This format accommodates subnetworks with their

own addressing schemes, is not dependent on detailed global knowledge of network

topology, and is independent of a device's current network location.

13

• A parametricdescriptionof subnetcapabilitiesandconnectionrequirements
includingbandwidthallocation,packetlossrates, packet delay, and multipoint

capability.

Finally, the authors conclude with a discussion of end-to-end and host interlace issues. They

argue that there should be a few application-oriented lightweight transport protocols (ALTPs) that

can provide variable grade end-to-end flow and error control to different classes of applications.

The transport protocols should be simple, designed to be implemented in VLSI and well integrated

into the host architecture and operating systems; they should provide reliability and performance

guarantees as requested by specific classes of applications. Examples are given of various ALTPs

including voice, file transfer, and interprocess communications.

2.6.2 General Comments

This paper provides some good requirements for a network model to support a heterogeneous

environment, although I am not sure about the value of having several application-dependent

ALTPs at the transport layer. The references are somewhat dated; recent references refer to the

authors" work.

2.6.3 Categodzation

Internet model (supporting multipoint communications) for high-speed networks in a

heterogeneous environ merit.

14
w

2.7 BALA, CIDON, AND SOHRABY', 1990

This paper summarizes the article "'Congestion Control for High Speed Packet Networks," by

K. Bala, I. Cidon, and K. Sohraby. It appeared in the Proceedings oflEEE INFOCOM '90, June

1990, on pages 520 through 526.

2.7.1 Summary

The authors describe a simple implementation of the generalized leaky bucket scheme, using

the traditional leaky bucket with the addition of a marker and a spacer, as a packet-level preventive

congestion control policy tbr a high-speed packet switched network. This scheme is recommended

for rate regulation of a bursty source.

This paper covers

• General framework of the overall scheme and the methodology

• Details of the generalized leaky bucket scheme tbr packet-level congestion control

• Control strategies that can be used at each intermediate node to handle congestion.

The authors argue that conventional mechanisms for congestion control within the network

based on end-to-end or hop-by-hop windowing schemes are unsuitable for high-speed networks.

They suggest a simple open-loop control mechanism that uses knowledge of the extrinsic

parameters associated with the connection to control the source by forcing it to contbrm to these

parameters. These schemes are known as input rate regulation schemes; leaky bucket is such a
scheme.

Based upon the above arguments, the authors suggest a leaky bucket scheme operating on a

session basis that limits the session's average rate and the source's burstiness. This restrictive

control is combined with an optimistic bandwidth usage scheme that works by marking packets

with two different colors-green and red. The average green packet rate entering the network is the

reserved average rate. The average red packet rate represents traffic in excess of this guaranteed

average rate and is sent to further utilize unused bandwidth in the network. Both types of packets

are further t-altered by a spacer that limits the peak rate at which the packets enter the network. The

marked packets are then sent into the network where they are treated according to their color by

means of a simple threshold policy at each intermediate node.

The following briefly summarizes the basic mechanisms tbr marking packets, spacing

transmission of packets, and thresholding.

• Marking. Each packet is allocated a single color via tokens that depend upon packet

lengths. A packet cannot be fragmented and must wait for all the single colored

tokens it requires before entering the network. In the absence of enough green tokens,

if the admission queue length is smaller than K the packet is forced to wait tbr green

tokens only; otherwise, it lcx)ks for enough red tokens.

• Spacing. The spacer introduces a minimum gap between consecutive packet

transmissions and limits the peak rate, thereby preventing the flooding of a slow link

on the session's path. The space length is a function of the previous packet length and

the slowest link on the path.

• Thresholding. Two strategies, based ton first-in-first-out service at the intermediate

node. were presented.

15

1.Eachnodequeuesat mostathresholdT of red packets, after which all

subsequent red packet arrivals are discarded andonly green packets are

accepted.

2. Both green and red packets are queued until the total number of packets equals

a threshold T, after which any subsequent red arrivals are discarded.

Statistical analysis led the authors to choose strategy 2. Additionally, they reason

that with strategy 1, red packets can occupy queue space without consideration for

green traffic. However, strategy 2 stops all reds from entering the queue the

moment the queue exceeds T; thus, it" the green rate is high, then the greens will

occupy most of the queue space and thereby get better service.

Finally, the authors conclude that further work needs to be done to obtain analytical models

for their proposed scheme, along with an extensive simulation study to help in determining the

parameters of the generalized leaky bucket scheme for different traffic types and grades of service.

2.7.2 General Comments

References are given in the article to additional papers on congestion control for high-speed
networks.

2.7.3 Categorization

Proposed scheme for congestion control for high speed packet switched networks:

generalized leaky bucket with a marker and spacer.

w

16
w

2.8 CLARK, SHENKER, ANDZHANG, 1992

This paper summarizes the article "'Supporting Real-Time Applications in an Integrated

Services Packet Network: Architecture and Mechanism," by David D. Clark, Scott Shenker, and

Lixia Zhang. The paper appears in the August 1992 Proceedings of SIGCOMM '92 on pages 14

through 26.

2.8.1 Summary

The authors present an enhanced network architecture for providing support to real-time

applications. The motivation for this architecture is based upon the observation that the distinction

between telephony networks and computer networks is becoming blurred. Merging the services

into a single network offers several advantages, including economies of scale, ubiquity of access

and improved statistical multiplexing. This architecture has tour key components:

1. Thenature of commitments made by the network when it guarantees a certain quality
of service

2. The service interface between the source and the network

3. The packet-scheduling algorithm required to meet the service

4. The means by which traffic and service commitments become established, i.e., the

admission of new sources.

However, the authors note that this paper does not address all the issues that need to be

considered in a final architecture. This paper focuses only on those issues related to the nature of

re'd-time traffic and how those issues 'affect the four key components.

The initial sections of this paper concentrate on discussing the properties of a particular class

of real-time traffic and how delay affects that class. The class of applications chosen for study are

those that can be characterized as play-back. The authors believe that most future real-time

applications will fit this paradigm. In these applications, the source takes some signal, packetizes

it and transmits it over the network while the receiver then depacketizes the data and attempts to

play-back the signal. The network, however, introduces some variation in delay, called finer, in

each delivered packet. To remove the jitter, the receiver buffers the data and then replays the data

at some play-back point. Data arriving after a play-back point is useless.

This particular class of traffic is then subdivided by the authors into two kinds. In one kind,

the applications use an a priori delay bound advertised by the network to set the play-back point;

the other kind adaptively sets the play-back point to one that minimizes delay and provides an

acceptable loss rate. Adaptive applications are also noted to be more tolerant, while rigid delay

applications are intolerant.

From the categorization presented above, the authors define two kinds of service

commitments to meet the traffic requirements. One kind is guaranteed service for rigid, intolerant

applications; the other is predicted service tbr adaptive, tolerant applications. The authors note that

there is a third class of traffic involving datagrams, where no service commitments need to bc

made. This class of traffic is also known as best-effort.

Now that the nature of the commitments is defined, the authors proceed to develop the packct-

scheduling algorithm needed to met these commitments. They first present a solution to thc

guaranteed service commitment, using a token bucket filter and weighted fair queueing (WFQ).

They also have chosen WFQ because under the name of packetized generalized processor sharing

17

(PGPS),ParekhandGaUagerhaveproventhat,undercertainconditions,thisalgorithmcandeliver
a guaranteedqualityof service.A brief technicaldescriptionis thenpresentedby theauthorsbut
wewill only summarizethekey ideasbelow.

First, to characterizea flow, theauthorshavechosenatokenbucketfilter. This filter is
characterizedbytwo parameters,arater and a depth b, where r is the rate at which tokens are being

deposited and b being the bucket's maximal depth. A traffic flow conforms to a token bucket filter

(r,b) it" there are "always enough tokens in the bucket whenever a packet is generated.

Now consider some set of flows and a set of clock rates ra. The clock rate of a flow represents

the proportion of the total link bandwidth which this flow will receive when it is active. By

assigning it a clock rate rct,_the network commits to providing this flow an effective throughput rate

no worse than (I,tco/(Zl_rP), where _ is the link speed and the sum in the denominator is over all

active flows. Parekh and Gallager have further shown the result that, in a network with arbitrary

topology, if a flow gets the same clock rate at every switch and the sum of the clock rates of all the

flows at every switch is no greater than the link speed, then the queueing delay of that flow is

bounded above by ba(r_)/r °_. This flow rate is independent of the other flows' characteristics.

The flow formulation above can be made precise in the context of a fluid flow model of the

network where the bits drain continuously out of the queues. We present only their packetized

version, though the fluid model is presented flu'st in the paper. Detine _', (,) for 'all ,_>,_',as the
number of bits that have been serviced from the flow ct between the times ," and t. Associate with

i

each packet the function e_' (,) = (,,,_' (, _ - _ (t))/r '_ where we take the right-hand limit of m; this

number is the level of backlog ahead of the packet i in the flow ct's queue divided by the flow's

share of the link and can be thought of as an expected delay until departure for the last bit in the

packet. The algorithm is at any time r, when the next packet to be transmitted must be chosen, select

the packet with the minimal e", (t) .

The authors then present an intuitive argument to show why WFQ is not a good "algorithm for

predicted service. Its emphasis on isolation prevents the effective sharing of resources, especially

in times of bursty traffic. This is because a WFQ algorithm would continue to send packets at their

clock rates. The goal of predicted service is to schedule packets so that they achieve the lowest

delay bounds. The play-back problem is analogous to deadline scheduling; and for this class of

scheduling, the deadline-first scheduling algorithm has been proven optimal. Thus. the authors

examine FIFO queueing as a better discipline for predicted service than WFQ. The authors use

simulation results to verify their argument.

However, the authors note that if you need to traverse several hops, the jitter tends to increase

dramatically because of the opportunity for uncorrelated queueing delays. To avoid this problem,

the authors propose to use FIFO+ as the queueing discipline. In this queueing technique, packets

are ordered by their expected arrival time. Again, the authors use a simulation to verify that FIFO+

achieves a slower rate of growth in delays as multiple hops are traversed, when compared to WFQ

or FIFO queueing.

After presenting each scheduling algorithm, the authors then combine them to provide service

for guaranteed, predicted, and datagram trat'fic. They argue that since they must isolate the

guaranteed flow from the other two fk)ws to meet the service commitments, a time-based WFQ

scheme must be used as a framework into which the "algorithms are merged. Each guaranteed

service client ct h_t,_a separate WFQ with some clock rate r _. The predicted and chttagram services

are then assigned to a pseudo WFQ flow, known as 0, with on each link r0 _ _ - E_r _t, where the

v

18
w

sum is overall the guaranteed service flows passing through that link. Within this flow 0, there are

a number of strict priority classes, and within each class the FIFO+ algorithm is used. The effect

of priority is to shift the jitter of a higher priority class to a lower class. Datagram service is

therefore assigned to the lowest priority class.

Now that the nature of the commitments have been defined and the packet scheduling

algorithm presented, the authors move on to det-me the service interface each algorithm requires.

For guaranteed service, only the clock rate rct is needed. For predicted service, the service interface

must characterize both the traffic and the service. This, therefore, includes the filter rate on size

(r,b) and the delay and loss characteristics. To be able to provide predicted service, enforcement

must be carried out. However, the authors note it is only necessary to check contormance at the

edge of the network, since any later violation would be due to the scheduling policies and load on
the network.

The final component of the architecture, the admission control procedure, is discussed. The

paper does not address the negotiation process but instead concentrates on the conditions under

which a network will accept or reject an admission. First, they arbitrarily select an upper bound of

90 percent for real time traffic. This bound ensures that datagram service continues at all times;

furthermore, the authors believe that it will provide enough spare capacity to accommodate most

fluctuations in the other service classes. The authors then present an illustration of the

considerations involved in designing an admission control policy, but do not present a specific
definition. This definition is the focus of their current work.

The authors admit that there are other service features that may need to be supported but are

not covered in the context of the scheme presented here. These include

• The traffic priorities within a single stream, so a source can control which packets get

dropped

• Dropping packets within the network, when the network knows the packets will not
meet their deadlines

• Buffering packets within the network so that they do not arrive early at the
destination.

Other researchers are also addressing the problems created by real-time applications in a

packet-switched environment. Related work includes

• Delay-EDD

• MARS

• Jitter-EDD

• Hierarchical Round Robin

• Statistical-EDD

• Stop and Go Queueing.

WFQ, Delay-EDD, and MARS are work-conserving scheduling algorithms, in that nothing is

Left idle if there is a packet in the queue; while stop and go queueing, hierarchical round robin, and

Jitter-EDD are non-work-conserving. The authors note, however, that none of these algorithms

deal with both guaranteed and predicted services. Most algorithms address only the needs of rigid

and intolerant applications, which they believe will not be the service requirements of most real-

time applications.

19

2.8.2 General Comments

The authors present many interesting ideas on the subject of how to support real-time

applications. The terms are well-defined and the motivation for each step is clear. However, as the

acknowledgment admits, this is an attempt to clarify ideas, so that at times the paper looses focus

and seems to go off on tangents. An extensive reference list is also provided.

2.8.3 Gategorization

Architecture and algorithms for providing support to real-time "'play-back" applications

requiring guaranteed and predicted service.

2O
rail

2.9 FLOYD AND JACOBSON, 1992

This paper summarizes the article "'Random Early Detection Gateways for Congestion

Avoidance," by S. Royd and V. Jacobson. This article is an advance draft copy, dated 2 September

1992, and as such, has not been published in any journal or presented at any conference.

2.9.1 Summary

This paper de_ribes a gateway algorithm, Random Early Detection (RED) tbr congestion

avoidance in packet-switched networks with window-based flow control. The RED algorithm

measures and controls the average queue size. Incipient congestion is detected when the average

queue size exceeds a minimum threshold. Transient congestion is accommodated by a temporary

increase in the queue. Longer-lived congestion is reflected by an increase in the average queue size,
and results in feedback to some of the connections to decrease their windows.

The authors first describe their algorithm, including design goals and guidelines, and optimal

settings tbr the algorithm parameters. A comparison of RED with previous work on congestion

avoidance gateways is then provided, followed by an evaluation of RED, which is supported by

simulations. The article concludes with implementation issues and further studies.

The basic algorithm is as follows. The RED gateway calculates the average queue size, using

a low-pass filter that calculates an exponential weighted moving average. When the average queue

size is less than the minimum threshold, no packets are marked. When the average queue is greater

than the maximum threshold, every arriving packet is marked, ff marked packets are in fact

dropped, or if all source nodes are cooperative, this ensures that the average queue size does not

significantly exceed the maximum threshold. When the average queue size is between the

minimum and maximum threshold, each arriving packet is dropped with probability p=, where Pa

is a function of the average queue size. Each time that a packet is marked, the probability that the

packet is marked from a particular connection is roughly proportional to that connection's share of

the throughput at the gateway. The RED gateway has two separate algorithms. The 'algorithm for

computing the average queue size determines the degree of burstiness that will be allowed in the

gateway queue. The algorithm for calculating the marking probability determines how frequently

the gateway marks packets, given the current level of congestion. The goal is tbr the gateway to

mark packets at fairly evenly spaced intervals and to mark packets sufficiently frequently to control

the average queue size.

Thus, the main goals and design guidelines of RED are

• A voiding bias against bursty traffic

• Utilizing distinct algorithms for congestion detection and for feedback, which helps

to avoid performance biases such as biases due to traffic phase effects and biases

against bursty traffic

• Avoiding global synchronization, which norm_ly results from notifying tdl
connections to reduce their windows at the same time

• Randomly selecting connections to notify, which avoids global synchronization,

traffic phase effects, and the bias against bursty traffic

• Responding quickly to high congestion by marking packets frequently when

congestion is high

21

• Allowing for a choice offeedback mechanisms for notifying a source node to reduce

the congestion control window for that connection

• Maintaining an upper bound on the average queue size. which allows RED to control

the average queue size

• Maintaining simplicity in algorithm design.

Before describing simulation results, the authors then discuss earlier work on congestion

avoidance gateways and, in particular, compare RED with Random Drop, Early Random Drop,

Drop Tail, and DECbit gateways. The authors argue that these gateways have their drawbacks. For

instance, Drop Tail introduces globai synchronization, resulting in a loss of throughput at the

gateway; Random Drop and Early Random Drop do not successfully control misbehaved users (the

authors show that RED can be easily modified to detect misbehaved users); Early Random Drop

drops packets with a fix probability which is independent of network traffic; Drop Tail and

Random Drop have a bias against bursty traffic; and DECbit exhibits traffic phase effects and a

bias against bursty traffic.

The RED algorithm has been characterized and compared to Random Drop, Early Random

Drop, Drop Tail and DECbit gateways through simulations. Simulation results have verified that

RED has effectively met the design goals and guidelines listed above, in addition to those of

fairness, low parameter sensitivity, and appropriateness for a wide range of environments.

Through simulations and theoretical analysis, the authors provide a few rules to ensure

adequate performance of their algorithm:

• To ensure adequate calculation of the average queue size, set the queue weight factor

to greater than or equal to 0.001.

• To maximize network power, set the minimum and maximum threshold for the

queue sufficiently high.

• To avoid global synchronization, make the difference between the maximum and

minimum threshold for the queue sufficiently large.

The authors conclude by describing further work in this area, including determining the

optimum average queue size for maximizing throughput and minimizing delay for various network

configurations; the handling of misbehaved users; implementation efficiency; determining whether

the queue should be measured in packets or in bytes; and the servicing of queues.

2.9.2 General Comments

This paper is generally well written (however, since it is a dra.ft, the reviewer feels that some

reordering of the sections is needed) and provides a good balance between design goals, the

algorithm and its parameter settings, implementation, simulation results, and issues for further

investigation.

2.9.3 Categorization

Gateway congestion avoidance algorithm for packet-switched networks with window-based
flow control.

22

2.10 GOLESTANI, 1990

This paper summarizes "'Congestion-Free Transmission of Real-Time Traffic in Packet

Networks," by S. Jamaloddin Golestani. The article appeared in Volume II of the June 1990

Proceedings ofIEEE INFOCOM '90 on pages 527 through 536.

2.10.1 Summary

This paper describes a framing strategy tbr congestion-free communication in packet

networks, applicable to high-speed network environments with a diverse mix of traffic types and

service requirements. The strategy is composed of two parts: a packet admission policy imposed

per connection at the edges of the network, and a particular queuing scheme practiced at the

switching nodes, which is called stop-and-go queuing. This strategy for congestion control

provides guaranteed services per connection with no packet loss and a constant end-to-end delay,

plus a small bounded jitter term. The au thor first describes the problems associated with control of

congestion and improvement of delay performance in packet networks, then focuses on the specific

issue of the tormation of long bursts inside a packet network, which increases the chance of buffer

overt]ow. This issue motivates the author's congestion control strategy, which is then described,

along with delay performance considerations and strategy tradeoffs. The paper concludes with a

discussion of implementation of stop-and-go queuing.

The author's approach is based on his observation of the formation of packet bursts inside a

network. He shows that despite perfect regulation and smoothing of arrived traffic at a network's

edge, the network is capable of creating long bursts of traffic, causing loss and delay. These bursts

result from the complicated way in which different traffic streams interact with each other. He

argues that more elaborate controls are necessary to provide guaranteed services with stringent loss

and delay requirements for time-critical applications in a packet network.

The author's framing strategy eliminates the packet clustering effect inside the network and

guarantees that once the packet streams are smooth, the smoothness is preserved throughout the

network. This property makes the worst-case queue sizes predictable and permits an environment
for congestion-free communication.

2.10.1.1 Framing Strategy

The following summarizes the author's framing strategy by defining the admission policy and

stop-and-go queuing scheme.

• The admission policy is based on the definition of smoothness. Once a connection k

is set up in the network and a transmission rate r k is assigned to it, its packet arrival

to the network is required to be (rk, T)-smooth. This means that tbr a connection k that

uses an access link l, the total length of admissible packets during each arriving frame

ot" l is limited to rkT bits. T is the time interval length of a frame.

• The stop-and-go-queuing scheme is based upon two rules:

Rule 1: Consider a node n, an incoming link l', an outgoing link l, _md a packet

that has arrived during a frame F' of link/' and seeks service by link I. Let F be

the departing frame of link / that is adjacent to the arriving frame F'.

Transmission of the packet should not start before the beginning of frame F.

23

Rule2: A link should not stay idle while there is an eligible packet left in the

queue. A packet is eligible at time t if it can be offered service at time t without

violating Rule 1. A packet is designated eligible only at the beginning of

departing frames, and during any departing frame no new packet is added to the

eligible job.

Given the admission policy and stop-and-go queuing scheme, the author concludes that (i) at

any queue, once a packet is m'a_rked as eligible for transmission, it will receive service within T

seconds; (2) the packet stream of each connection will maintain the original smoothness property

throughout the network; and (3) a buffer space of at most 3CtT per link / is enough to eliminate

buffer overflow in the network (C t is link capacity.)

2.10.1.2 Issues

The tbllowing briefly highlights issues discussed in the paper that relate to the framing

strategy.

Given the above framing strategy, the author discusses delay performance. He shows

•that end-to-end delay of packets of a connection is constant, except for a delay jitter

between -T and T. Although packet delay with conventional FIFO queuing can be

smaller on the average than that of the framing strategy, the delay is distributed over

a wide range, which makes the behavior of the network relatively unpredictable and

subject to buffer overt'low and packet loss. He concludes that delay performance

resulting from his strategy is attractive, given that the total queuing delay of the

connection is acceptable.

The benefits of the t_aming strategy are basically obtained by incurring two

performance costs: the extra delay of the stop-and-go queuing, and the strict

admission policy of enforcing smoothness on packet arrivals. The queuing delay can

be engineered to be within the acceptable range by appropriate choice of the frame

size T. The author suggests that it may be desirable to incorporate multiple frame

sizes into his strategy. The real cost of the framing strategy is thus due to the policy

of admitting a limited number of packets per connection in each frame. The author

recommends that less conservative traffic control and management strategies should

be combined with the framing strategy.

The author also discusses the implementation of the framing strategy and concludes

that implementation is simple, with little processing overhead and minor hardware

modifications to the conventional FIFO queuing structure.

2.10.2 General Comments

This is a well written paper on the author's simple strategy for congestion control, presenting

his ideas and reasons in a straightforward manner. Further details on stop-and-go queuing can be

found in "'A Stop-and-Go Queuing Framework for Congestion Management" by S. J. Golestani,

Proceedings c_[SIGCOMM '90, pages 8 through 18.

2.10.3 Categorization

Congestion control strategy for packet networks.

24

2.11 LAI, 1990

This paper summarizes the article, "'Protocols for High-Speed Networking," by W. Lai. It

appears in Volume II of the June 1990 Proceedings oflEEE INFOCOM '90 on pages 1268 and
1269.

2.11.1 Summary

This paper focuses on approaches for increasing protocol speeds. The author begins by

describing bottleneck problems for wide-area networks and protocol processing and then discusses

three approaches to increase protocol speeds. He concludes by briefly describing new design issues
in high-speed networks and various current activities in this area.

The author begins by describing how the increase in processing speeds of communications

processors has not been keeping up with the increase in transmission bandwidth; thus, the

bottleneck has now shifted to processing of packets in network nodes and end systems. Based on

these assumptions, three approaches to increase protocol speeds are described. Following are

highlights of the author's main points.

• Improved implementation of protocols

- Protocols should be properly embedded in their operating system environment,

and a low-overhead process structure should be available for protocol
processing.

- Overhead can be reduced by the optimization of the execution path for normal

data handling, the use of bigger packet sizes, the use ol" packet groups (i.e., for

acknowledgments and control), and the efficient control of protocol dynamics.

- Hardware assistance, such as pipelining and parallel processing or custom
VLSI, can be used.

• Packet formatting optimization: Formatting principles to streamline packet

processing include alignment (i.e., word bouncklries); appropriate placement of

protocol control information in header and/or trailer; single use of a control field; and

a fixed format for different types of packets.

• Use of success-oriented protc,,col architectures

Network functions can be streamlined by providing only a common core set of

functions that apply to all information flows.

End-system functions can be streamlined via lightweight protocols that are

tailored to particular end-to-end communication needs.

The discussion then switches briefly to new design issues. With high-speed networks, round-

trip delays will primarily be caused by propagation delays and will remain constant. Thus, the

higher the transmission speed, the more bits there are in the pipe. To cope with the high volume of

traffic, algorithms such as selective retransmission, and new control mechanisms, are needed.

Finally, current activities in high-speed networking are listed. These include work on a header

prediction algorithm, NETBLT, VMTP, frame relay for ISDN, ATM tbr B-ISDN, and work by

several ANSI task groups.

2.1 1.2 General Comments

This article is very brief and nontechnical: it provides a couple of good references.

25

2.11.3 Categorization

Proposals for increasing protocol speeds for high-speed networks.

26

2.12 MITRA, 1990

This paper summarizes the article "'Optimal Design of Windows for High Speed Packet

Networks," by D. Mitra. It appears in Volume III of the June 1990 Proceedings oflEEE

INFOCOM '90 on pages 1156 through 1163.

2.12.1 Summary

In this paper, the author examines the basic mechanism of sliding windows for the congestion

control of virtual circuits. The problem of optimal design of windows is formulated and solved;

formulas are derived for basic quantities such as throughput, delay, and packet queue lengths.

The author's work is based on the central thesis that the combination of the propagation delays

that exist in geographically dispersed data networks and the high transmission rates of the

emerging networks call for completely new design procedures. As the transmission speeds scale

up, the propagation delays, which do not scale, become increasingly influential in determining

performance. This is the motivation behind the asymptotic theory of the paper. The development

of asymptotics is distinct for the three regimes of light, moderate, and heavy nodal usages. For a

broad spectrum of pertbrmance functionals, the asymptotically optimal regime is the middle one,

on which the analysis focuses (i.e., nodal processing rate).

It is demonstrated that existing design rules based on neglecting the effects of propagation

delay yield substantially worse pertbrmance, albeit with much lower memory requirements than

the rules proposed by the author. The following summarizes the author's efforts:

• Adaptive, dynamic windowing. A design equation is given that relates the mean

response time to the optimal window size. This equation is used to adjust the

window, based on measurements of the response time in a possibly nonstationary

environment. The optimal window size is k, where K is the mean number of packets

of the virtual circuit that may be processed and transmitted at a single node in an

interval equal to the mean propagation delay.

• Buffer sizing. An "'optimistic buffer design" approach is proposed in which buffer

sizes arc a small multiple of ,f_, rather than 0t_,) as in the standard conservative

approach. One of the reasons behind this optimistic approach is that the

overwhelming majority of packets in an optimum window are found not in the nodal

buffers, but in the transmission pipeline. Although the use of sm',dl buffers leads to

buffer overt'lows and consequent retransmissions, with proper design, overflows are

rare and the degradation in performance due to retransmissions is small.

• Multiple virtual circuits. The memory requirements for an implementation in which

each virtual circuit has a dedicated buffer are compared to those of another in which
a shared buffer is used.

2.12.2 General Comments

This paper is very theoretical. An even more detailed description of the author's work can be

found in "'Optimal Design of Congestion Control for High Speed Data Networks," AT&T

Technical Report, September 1989. For completeness and continuity, some of the results of this

paper are included in the summary above. The A"I'&T technical report "'A Go-Back-n Protocol

27

Which is Efficient in High Speed Data Networks with Small Buffers," by D. Mitra and I. Mitrani,

January 1990, demonstrates the effectiveness of the results of the previous two papers by using the

go-back-n protocol for data retransmissions.

2.12.3 Categorization

Examination of the basic mechanism of sliding windows for congestion control, including

queue buffer sizing.

28

2.13 RAMAKRISHNAN AND JAIN, 1988

This paper summarizes the article "'A Binary Feedback Scheme for Congestion Avoidance in

Computer Networks with a Connectionless Network Layer," by K. Ramakrishnan and R. Jain. It

appeared in the Proceedings of SIGCOMM "88, August 1988, on pages 303 through 313.

2.13.1 Summary

This paper describes the Explicit Binary Feedback Scheme, which uses a connectionless

network layer protocol for congestion avoidance in networks. Briefly, the scheme uses minimal

feedback (one bit in each packet) from the network to adjust the amount of traffic allowed into the

network. Each congested network server (router/link) sets the congestion avoidance bit. This

congestion indication is returned to the network user via transport level acknowledgment and is

then utilized by the network user to control intormation flow into the network. The scheme is

distributed, adapts to the dynamic state of the network, converges to the optimal operating point,
is simple to implement, has low overhead, and maintains fairness.

The authors first summarize their feedback scheme, which consists of a router policy and a

user policy. The overall model is then presented, including definitions for efficiency and fairness.

This is followed by a description of each of the policy's sub-elements, including the analysis that

went into the choice of the various mechanisms based upon the model. The paper concludes with

a discussion of the behavior of the scheme with random packet-size distributions and under
transients.

The following summarizes the authors' scheme by defining the router and user policies and

also lists the issues/topics addressed in the paper.

• Router Policy

- Congestion Detection. The routersets the congestion avoidance bit in the packet

when the average queue length at the router at the time the packet arrives is

greater than or equal to one. Issues discussed include router utilization versus

queue length to detect congestion and hysteresis versus threshold policy for

generating the feedback signal (setting the congestion avoidance bit).

Feedback Filter. A filter is needed to pass only those states of the touters that

are expected to last long enough for the user action to be meaningful. Thus,

determination of the average queue length is based on the number of packets in

the network router that are queued and in service, averaged over an interval T.

This interval T is the last cycle time plus the busy period of the current cycle. A

cycle is defined as busy+idle time. Issues discussed include weighted,

exponentially running average queue size; fixed vs. dynamic time intervals: and

the use of the current cycle for determining average queue size.

• User Policy

Decision Frequency. The user updates the window size after receiving

acknowledgments for a number of packets transmitted. This number is the sum

of the previous window size (Wp) and the current window size (We) at which the

transport connection is operating. The bits returned in the acknowledgment are

29

stored by the user. Issues discussed include altering the window size after every

acknowledgment, window oscillation, and feedback delay after window size

change.

Use of Received Information. The only bits examined are those that correspond

to the last W c packets for which acknowledgments are returned. Issues

discussed include the use of information prior to window change.

Signal Filtering. If at least 50% of the bits examined are set, the window size is

reduced from its current value of W c. Otherwise, the window size is increased.

Issues discussed include multiple vs. single cut-off factors and the dependency

of the cut-off factor on the policy used by the routers to detect congestion.

Decision Function. When the window size is increased, W c is incremented by 1.

When the window size is decrease& it is decreased to 0.875"W c. Issues

discussed include additive vs. multiplicative increase/decrease, window

oscillations, and efficiency.

Finally, the behavior of the binary scheme was tested under various transients and

pathological changes. Results include the following:

• The multiplicative decrease/additive increase algorithms show that two sources with

randomly distributed packet size distributions reach a fair value of the network

resources allocated to them.

• After transients in service time (resulting from changes in the network) occur, the

overall window size recovers and the network operates at its new maximally efficient

point.

• Two users who start at different times in the network converge to a fair value so that

their window sizes are nearly equal.

2.13.2 General Comments

This article presents the authors' 'algorithm clearly, providing motivation for the model and

justifying the parameter choices for optimization of the algorithm.

2.13.3 Categorization

Congestion avoi "dance algorithm (feedback scheme) for networks using connectionless

network layer protocols.

3O

2.14 SHACHAM AND MCKENNEY, 1990

This paper summarizes the article "'Packet Recovery in High Speed Networks Using Coding

and Buffer Management," by N. Shacham and P. McKenney. It appeared in Volume I of the June

1990 Proceedings oflEEE INFOCOM '90 on pages 124 through 131.

2.14.1 Summary

This paper presents a unique method based on forward error correction (FEC), which allows

the destination to reconstruct missing data packets by using redundant parity packets that the

source adds to each block of data packets. The coding technique is suitable for use in gigabit, wide-

area networks (GWANs), reducing the need for retransmissions of reliable data, enhancing the

quality of real-time data that cannot rely on acknowledgments and retransmissions, requiring only

small data storage tor operation, and being amenable to hardware implementation. The authors

discuss (1) coding for packet recovery, (2) buffer management and interleaving, and (3)

performance evaluation. The following briefly summarizes the authors' ideas, with emphasis on
their performance results.

2.14.1.1 Coding

The authors discuss the motivation for their design of the coding scheme, present several

schemes suitable for a GWAN environment, and consider the special case in which erasures occur

in packet-long sequences. Briefly, their approach utilizes sequence numbers, which are "already

required by many protocols. Since packets are sent in increasing order, a data recipient identifies

missing packets (sequence of bit erasures) by gaps in the arriving sequence. The algorithm groups

data packets into blocks of a predetermined size, and adds to each block a number of parity packets

to contain the error-control bits. The number of parity packets, and their construction, determines

the maximum number of data packets that can be recovered. A vertical parity packet scheme is

described for single packet recovery, and a diagonal parity packet scheme is descri bed for multiple

packet recovery. These coding and encoding schemes add minimal delay to the packets and require
only small data storage for operation.

The authors also extend their discussion to handling of bit errors and recovering bursts of lost
packets.

2.14.1.2 Buffer Management and Interleaving

To alleviate the effect of packet loss correlation, the authors' approach also considers (1)

buffer management procedures in the networks that would reject packets based on their block

aff'diation and the number of packets already lost in their block; and (2) interleaving the data either

intentionally (deterministically) by the source, or as it occurs naturally during statistical

multiplexing. Interleaving helps to spread bursts of deleted packets in the arriving stream over
multiple blocks.

2.14.1.3 Performance Evaluation

Both an analytic model and more realistic simulations were used to show the limitations of

the coding schemes and the effects of buffer management and interleaving. Packet loss ratio (ratio

of packet loss rate after decoding to the rate when no coding is used) was used as the performance

31

measure.Simulationsshowedthatasignificantreductionin packetlossratewasachievedwitha
combinationof coding,buffer management,andinterleaving.Someimportantfindingsareas
follows:

• Buffer management shows a total improvement of three orders of magnitude

(analytical results).

• Packet loss correlation is a severe problem when each packet stream has a dedicated

finite buffer. Buffer management improves the loss ratio by up to two orders of

magnitude (simulation results).

• Deterministic interleaving achieves better loss ratios than statistical multiplexing.
Loss ratios of better than 10-3 were demonstrated (simulation results).

2.14.2 General Comments

This is a good paper describing a novel technique.

2.14.3 Categorization

Packet recovery algorithm for use in high-speed networks; effective for network congestion

avoidance.

32

2.15 WlLLIAMSON AND CHERITON, 1991

Th is paper summarizes the article "'Loss-Load Curves: Support for Rate-Based Congestion

Control in High-Speed Datagram Networks," by Carey L. Williamson and David R. Cheriton. It

appeared in the Proceedings of SIGCOMM '91, September 1991, on pages 17 through 28.

2.15.1 Summary

This paper describes an approach that uses loss-load curves for rate-based congestion control

in high-speed datagram networks. Loss-load curves characterize the packet delivery service to the

network. In particular, they express the probability of packet loss as at'unction of offered load at a

given time, or of load condition on the network. The network (i.e., gateways) explicitly feeds this

information back to network clients (i.e., source hosts) who, depending upon the application,

choose their own rate at which to transmit data, based upon tradeoffs between throughput and

packet loss. Gateways provide periodically updated curves to their clients, based upon dynamic

network conditions (e.g., network capacity).

In their paper, the authors describe the basic loss-load model and illustrate their approach by

presenting and evaluating (via analytic and simulation results) a specific loss-load "algorithm. A

discussion of refinements and extensions of the basic loss-load model is also provided.

2.15.1.1 Loss-Load Model

The loss-load model determines a packet loss probability Pi for each sender such that the

excess traffic is discarded. Mathematically expressed, this requirement is _i_ _P,ri = to,,, - c, where

C is the gateway capacity, ri is the average rate each sender is contributing, and rro,ot is the total

load at the gateway. Each packet from sender i is discarded, at random, with probability Pi, tO

statistically enforce the desired rate of packet loss. The rules used to compute the probabilities are

specified by the network manager. Once the rule is specified, the gateway computes this loss-load

information as feedback to the source hosts. This information is exchanged using a minimal

number of parameters. The host is then responsible for choosing its own operating point on the

loss-load curve and multiplexing this rate among all packets. The choice of rate is based on the type

of service required by the packets, throughput, the estimated round trip time to each destination,
and other factors.

The authors propose a specific formula for the loss-load curve, which will not be detailed here.

The formula was designed with three major objectives: (1) keeping offered load close to capacity

at all times, (2) encouraging sender cooperation, and (3) providing protection from misbehaving

hosts. Using the formula proposed by the authors, only two parameters are fed back from the

gateway to the host in order to calculate the loss-load curves of the given gateway. One parameter
measures the total (excess) traffic load, and the other measures the distribution of the total load.

2.15.1.2 Analytic Results

Analytic results of the proposed model show several desirable characteristics for a congestion

control strategy and include

• Bounded packet loss. Packet loss probability for a cooperating sender is bounded and

predictable.

33

• Responsiveness to load changes. Cooperation from all senders is encouraged and

protection is provided from greedy senders. As a sender increases its transmission

rate (towards its own maximum rate), other hosts are encouraged to slow down.

However, a sender increasing its rate beyond its optimal rate encourages other hosts

to speed up.

• Convergence. The network as a whole converges to a stable equilibrium operating

point with each sender at its own maximum transmission rate. Convergence is always

above the equilibrium load and no oscillation occurs.

2.15.1.3 Simulation Results

Simulation results of the proposed model show additional characteristics of the congestion

control strategy. These include

• Responsiveness to load changes. The system returns to equilibrium after load

changes, both increases and decreases. Convergence is fast and no oscillations occur.

• Resp<xasiveness to changes in capacity. Since capacity information is implicitly

contained in the loss-load curve, senders are able to quickly and efficiently adapt to

changes in network capacity.

• Fairness. Regardless of round trip delay, each sender receives the same equilibrium

throughput.

2.15.1.4 Refinements and Extensions

The authors conclude their paper by discussing refinements and extensions to their basic

model. Topics discussed include the following.

• Controlling queue size at the gateway by discarding rtot, t - C+e packets

• Comparison of various queuing disciplines (FCFS, priority, and fair queuing)

• Consideration of delayed resolution, which defers a decision to discard a packet until

the end of a service interval (as opposed to the time when a packet arrives)

• Use of type of service to bias packet loss

• Modification of loss-load strategy to perform congestion avoidance.

2.15.2 General Comrnents

This paper presents the authors' congestion control strategy clearly, by first describing the

basic model and then the specific proposed formulas. A nice explanation of analytic and simulation

results is given and includes comparison to other approaches.

2.15.3 Categorization

Network service characterization to support rate-based congestion control in high-speed

datagram networks.

34

2.16 ZHANG, 1990

This paper summarizes the article "'VirmalClock: A New Traffic Control Algorithm for

Packet Switching Networks" by L. Zhang. It appears in the September 1990 Proceedings of

SIGCOMM '90 on pages 19 through 29.

2.16.1 Summary

This paper describes an algorithm, VirtualClock, for data traffic control in high-speed

networks. VirmalClock maintains the statistical multiplexing flexibility of packet switching while

ensuring each data flow its reserved average throughput rate. The author first describes the

algorithm, including design goals and modifications made to the initial algorithm that resulted in

more robust control. Simulation results are provided that show the strengths of the algorithm.

Finally, issues for further investigation are described.

VirtualClock is a rate-based traffic control algorithm. One of the difficult issucs is how to

monitor and control the transmission rate of statistical data flows, and how to enforce network

resource usage to prevent interference among different users without sacrificing the flexibility of

statistical multiplexing; VirtualClock solves these problems. It was designed to provide the

following functionalities:

• Support diverse throughput requirements from various applications by enforcing the

resource usage according to each flow's average throughput reservation

• Monitor average data flows and provide measurement input to other network control
functions

• Provide fire walls between individual data flows

• Preserve the full flexibility of statistical multiplexing of packet switching.

The basic idea of VirtualClock was inspired by the Time Division Multiplexing (TDM)

system. The author wanted to provide the ftre wails of a TDM system, yet preserve the flexibility

of statistical multiplexing of packet switching. A TDM system is driven by a real-time clock; the

author suggests that a statistical multiplexing system may use a virtual clock concept in a similar

way.

Briefly, the 'algorithm is as follows. Each data flow is assigned a Virtual Clock that ticks (i.e.,

advances) at every packet arrival from that flow; a tick step is equal to the mean interpacket gap.

Thus, the VirtualClock reading indicates the expected arrival time of the packet. If a flow sends

packets according to its specified average rate, its VirtualClock reading should be near real time.

To imitate the transmission ordering of a TDM system, each switch stamps packets by the flows'

VirtualClock reading and uses the stamp to order transmissions while preserving the statistical

nature of packet switching. The algorithm can thus monitor each flow by comparing its

VirtualClock with the real-time clock periodically, in order to provide feedback to flow sources if

their actual throughput ever departs significantly from the reserved rate. The author details the

VirtualClock as a data flow monitor and describes other features such as priority service and

building fire walls (avoiding interference among flows).

35

Theauthorfurtherdescribesrevisionsthat havebeenmadeto the'algorithmasa resultof
simulations.Theserevisionsaddressedissuessuchasthese:(1)aflow cannotincre_Lsethepriority
of its packetsby savingcreditswithin theaverageinterval(AI is the intervaloverwhicha flow's
VirtualCl(xakis checked);and(2) aflow s(xtrcemustconstrainitself from sendingmorethanthe
allowednumberof packetsduringeachinterval (thisis theuser-behaviorenvelope).

The VirtuaiClock algorithmhasbeentestedextensivelythroughsimulations.Thefollowing
summarizesthe test results for the model used:

• Flows with same throughput requirement

- The network meets the flows' average throughput requirement.

- The average queueing delay is low.

- The network load is stable and congestion free.

- The network provides a fair service, independent of flows' path lengths.

• Supporting diverse flow throughput

- The user's expected throughput is satisfied; different path lengths show no

effect.

- Lower throughput flows seem to experience a higher queueing delay.

• Building fire walls between flows

- Normal flows are well protected from (the few) misbehaving users.

- When the misbehaving users drove the link utilization to 100%, queueing delay

of the normal flows remained about the same (as with the previous

experiments).

The author concludes by describing further work in this area, including how to design

application protocols that can automatically adjust to constraints such as the user-behavior

envelope, performance of VirtualClock under highly bursty nattic, resource overbooking versus

delay reduction, and t-me-tuning of the average interval.

2.16.2 General Comments

Th is paper is well written. The algorithm is simple (although this reviewer needed to reread a

page or two, to figure it out); the author first describes the initial version of the "algorithm and then

discusses the important issues that resulted in the final version. Simulation results are well

summarized so as not to overwhelm the reader and are to the point.

2.16.3 Categorization

Data traffic control algorithm for use in high-speed networks.

36

2.17 ZHANG, DEERING, ESTRIN, SHENKER, AND ZAPPALA, 1993

This paper summarizes the article "'RSVP: A New Resource ReSerVation Protocol" by L.

Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zapp'ala. It is a draft copy of a submission to
SIGCOMM "93.

2.17.1 Summary

This paper presents a reservation protocol for creating and maintaining resource reservations

for both unicast and multicast applications. The authors motivate the development of this protocol

by pointing out the inadequacies of the current point-to-point best effort service for the new classes

of distributed applications being developed. They also note that their protocol is only part of a

larger architecture necessary to support the new application requirements. The other pieces of the

architecture are

• A flow specification, orflowspec, which describes the characteristics of both the

traffic stream sent by the source and the service requirements of the application

• A routing protocol that can provide quality unicast and multicast paths

• An admission control algorithm that can maintain the network load at a proper level

• A packet scheduling algorithm that can provide the committed qualities of service,

once the flow has been accepted.

Specifically, the authors present their design goals, the design principles used to meet these

goals, a detailed description of the protocol operation, a simple exampl6, the current state of the

implementation, and related and future work.

The authors determine their design goals by f'trst demonstrating that simple extensions to

existing protocols are inadequate for point-to-point, point-to-multipoint, and multipoint-to-

multipoint reservations. In particular, the obvious extensions do not address the properties of

multiple, heterogeneous receivers and/or multiple senders. In the process of defining the

inadequacies, the authors identified the following seven important design goals:

1. Accommodate heterogeneous receivers.

2. Adapt to changing multicast group membership.

3. Exploit the resource needs of different applications in order to use network resources

efficiently.

4. Allow receivers to switch channels: i.e., the receiver should have the ability to

control which packets are carried on its reserved resources.

5. Adapt to changes in the underlying unicast and multicast routes, so that the resource

reservations are automatically reestablished along the new paths as long as adequate
resources are available.

6. Control protocol overhead, so that it does not grow linearly (or worse) with the

number of participants.

7. Make the design modular, to accommodate heterogeneous underlying technologies.

The authors stress that RSVP is the application's vehicle to communicate their requirements

to the network. RSVP delivers these requests to the switches but is not responsible for delivering

the services. The kinds of services RSVP can support arc those that only rely on state being

established at the individu',d switches along the paths that are determined by the routing algorithm.

37

Theauthorsthendefineandelaborateuponsix basicdesign principles to achieve the design

goals presented above. These principles are summarized below, along with the benefits.

Receiver-initiated reskrvation is unique in letting the receivers choose the level of resources

reserved and be responsible for initiating and keeping the reservation active. The receiver takes the

primary role because the receiver is the one who knows its own limitations and is the one ',fffected

by the quality of service received.

Separating the reservation from packet filters enables the capability of switching channels. A

resource reservation merely assigns certain resources to the entity making the reservation. The

entity making the reservation is responsible for controlling which packets can use those resource

via a f'llter.

Different reservation styles, in the form of f'dters, can be one of three types:

• No filter

• Fixed filter

• Dynamic filter.

No-f'dter reservation implies that any packets destined for a particular multicast group can use

the re_rved resources. A t_ed-filter reservation means that the receiver will receive data only

from the sources listed in the original reservation request for the duration of the reservation. A

dynamic-t-alter reservation 'allows the receiver to change its filter to different resources over time.

These different styles allow the individual switches to decide how the individual reservation

requests can be merged.

Maintaining soft-state at the switches allows the ability to adjust to dynamic changes in the

network. The soft-state information consists of path and reservation state. Each source sends a path

message that establishes or updates the path's state, while the receiver sends a reservation message

that establishes or updates the reservation. The path messages follow the routing decision of the

routing protocol and carry a flowspec as well as a flag indicating if filtered reservations are

allowed. The reservation message contains a flowspec, a reservation style and a packet filter it" the

reservation style is a fixed-filter or a dynamic-filter. Both message types also carry a timeout value

used by the switches to delete the state. It is the responsibility of the senders and receivers tt_

prevent timeouts by refreshing the state periodically.

Controlling protocol overhead is a key concern to achieve efficient scaling. The RSVP

overhead is determined by three factors:

1. The number of RSVP messages sent

2. The size of the RSVP messages

3. The refresh frequency of path and reservation messages.

The number of RSVP messages is controlled by merging. The size of the messages is in "

proportion to the number of sources upstream. The refresh frequencies can be tuned; however, the

responsiveness to dynamic conditions is dependent on the timing of the refresh frequencies.

Currently, static values are used. but in the future, adaptive timeout algorithms will be explored.

Modulari_ is ach loved by minimizing thc coupling with the other four comp_nents of the

architecture: the flowspec, the routing protocol, the network admission control protocol, and the

packet scheduling algorithm. The dependencies on the other components are as follows:

• N_ assumptions are made about the flowspec.

38

• Theadmissioncontrolprotocolprovidesanadmitor rejectdecisiononly if 'all the
switches'along the path admit the flow.

• The packet scheduling algorithm can change packet filters without needing to
establish a new reservation.

• The routing protocol provides both unicast and multicast routing; and a sender to a

multicast group can reach all group members.

In the next two sections, the authors review very briefly the operation of the protocol followed

by a walk-through of a no-filter reservation and a filtered reservation example, which helps clarify

some of their description. Their description relays the following information.

The receiver plays a key role in the operation of the protocol. As the entity responsible for the

reservation messages, RSVP must make sure that the reservation message follows exactly the data

packets of the path message. This involves establishing a sink tree from each receiver to all the

sources, which can be accomplished in the following way:

• Combine "all the routing trees given by the protocol for the same multicast group, to

create a (directed) source mesh; maintain this source mesh by forwarding periodic

path messages along the routes provided by the routing protocol.

• Obtain a sink mesh by reversing the direction of all links in this source mesh; then

build a sink tree routed at each receiver by tracing the paths from the receiver to reach
•all the sends.

• Forward reservation refresh messages along the sink trees to maintain current

reservation state; however, reservation messages propagate only as far as the closest

point on the sink tree where a reservation level greater than or equal to the reservation

level being requested has been made.

Each switch uses the path states to maintain, for each muiticast group, a table of incoming and

outgoing interfaces. Each incoming interface keeps the flowspec information it has forwarded

upstream to merge reservation requests from multiple downstream links. For each outgoing link,

there is a list of senders, and tbr each sender the previous hop address for data arriving at the switch,

and a set of reservations. A reservation may consist of an owner, a filter, and the amount of

resources reserved. The information contained in the reservation depends on the reservation style.

To create and maintain a reservation, each data source sends a path message that contains the

flowspec. When a switch receives a path message, it first checks to see if it already has the path

state tbr the named target; it"not, path state for that target is created. The switch then obtains the

outgoing interface of the path message from the routing protocol and updates its table of incoming

and outgoing links accordingly; the source address (plus port number in the case of 13:')carried in

the path message will be recorded if the path message indicates that the application may require a

filtered rcservation. The path message is then forwarded only if it is from a new source or a change

in route has been detected. Otherwise, the path haessage is discarded and a new path message

containing all path information obtained so far is sent periodiczdly instead.

When a receiver receives a path message from a source for whose data it would like to make

a reservation, the receiver sends a reservation message using the flowspec from the incoming

message (the flowspec may be modified to meet the needs of the receiver). This message follows

the reverse route of the path message to the data source. If any switch rejects the reservation, a

RSVP reject message will be sent back to the receiver and the reservation message is discarded.

39

However,if thereservationmessagerequiresanew reservationto be made, it will propagate

towards the source until it reaches the closest point 'along the sink tree where the reservation level

is equal to or greater than the one being made.

Once the reservation is established, the receiver periodically sends reservation refresh

messages, which are merged as they travel along the sink trees. The details of the merging are

dependent on the reservation style and are not elaborated in the paper.

When a sender (receiver) wishes to terminate the connection, the sender (receiver) sends a

path (reservation) teardown message to release the path (reserved resources). There is no

retransmission timer, ff it is lost, the intermediate nodes will time out the corresponding state.

After presenting the basic operation of the protocol, the authors discuss status, and related and

future work. In particular, the design has been implemented in a simulator and work is currently

underway to implement it on DARTnet. No results from the simulation were included; though, the

authors mention that the simulator was used to help revise the design through an iterative test and

evaluation process.

The authors then compare their work to ST; ST-H; work by Pasquale, Polyzos, Anderson, and

Kompella; and work by Gupta and Moran. The key deficiency of ST and ST-II is that they tail to

provide a robust, efficient solution to the multipoint to multipoint case. Furthermore, ST suffers

from requiring a centralized access controller to coordinate among the participants and manage the

tree. Pasquale et al. have proposed an approach based upon their work with multimedia channels.

However, they only considered a single source. Gupta and Moran have proposed a channel

grouping approach that is similar to ST in allowing a data source to make a reservation for its own

data transmission along its own multicast tree; however, it also allows for each reservation request

to specify its relationship to other reservations within its multicast group. Two kinds of

relationships have been identified: advisory 'and mandatory. However, not enough information was

available to make any further comparisons.

The authors conclude with the following suggested list of questions to be explored.

• How does RSVP perform in a real network?

• How well does RSVP scale?

• What other new functionality should be offered (e.g., security and/or

authentication)?

• What other reservation styles should be offered?

2.17.2 General Comments

In general, this is a well-written paper. There is some evidence that it is a d_raft, due to its

grammaticaJ errors and incomplete references. Details or" the approach are not included; however,
the reviewer feels that more information would have been beneficial.

2.17.3 Categorization

Approach for solving resource reservation needs for unicast and multicast applications in a

heterogeneous environ ment.

4O

